Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Virology ; 589: 109921, 2024 01.
Article in English | MEDLINE | ID: mdl-37939648

ABSTRACT

Human norovirus is the leading cause of acute gastroenteritis worldwide, however despite the significance of this pathogen, we have a limited understanding of how noroviruses cause disease, and modulate the innate immune response. Programmed cell death (PCD) is an important part of the innate response to invading pathogens, but little is known about how specific PCD pathways contribute to norovirus replication. Here, we reveal that murine norovirus (MNV) virus-induced PCD in macrophages correlates with the release of infectious virus. We subsequently show, genetically and chemically, that MNV-induced cell death and viral replication occurs independent of the activity of inflammatory mediators. Further analysis revealed that MNV infection promotes the cleavage of apoptotic caspase-3 and PARP. Correspondingly, pan-caspase inhibition, or BAX and BAK deficiency, perturbed viral replication rates and delayed virus release and cell death. These results provide new insights into how MNV harnesses cell death to increase viral burden.


Subject(s)
Caliciviridae Infections , Norovirus , Mice , Humans , Animals , Macrophages , Apoptosis , Immunity, Innate , Norovirus/physiology , Virus Replication
2.
Emerg Microbes Infect ; 12(2): 2256416, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37672505

ABSTRACT

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Humans , Coronavirus OC43, Human/genetics , SARS-CoV-2 , Receptors, Aryl Hydrocarbon/genetics , Cell Line
3.
Curr Protoc ; 3(7): e828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37478303

ABSTRACT

Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.


Subject(s)
Caliciviridae , Norovirus , Mice , Humans , Animals , Norovirus/genetics , Antiviral Agents/pharmacology , Caliciviridae/genetics , Genome , Mammals/genetics
5.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Article in English | MEDLINE | ID: mdl-34437657

ABSTRACT

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Subject(s)
Interferon-beta/metabolism , SARS-CoV-2/immunology , Viral Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Chlorocebus aethiops , Eukaryotic Initiation Factor-2/metabolism , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/pharmacology , SARS-CoV-2/drug effects , STAT1 Transcription Factor/metabolism , Vero Cells , Viral Proteins/genetics
6.
mSphere ; : e0031321, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133201

ABSTRACT

The COVID-19 pandemic has impacted and enforced significant restrictions within our societies, including the attendance of public and professional athletes in gyms. Liquid chalk is a commonly used accessory in gyms and is comprised of magnesium carbonate and alcohol that quickly evaporates on the hands to leave a layer of dry chalk. We investigated whether liquid chalk is an antiseptic against highly pathogenic human viruses, including SARS-CoV-2, influenza virus, and noroviruses. Chalk was applied before or after virus, inoculum and recovery of infectious virus was determined to mimic the use in the gym. We observed that addition of chalk before or after virus contact led to a significant reduction in recovery of infectious SARS-CoV-2 and influenza virus but had little impact on norovirus. These observations suggest that the use and application of liquid chalk can be an effective and suitable antiseptic for major sporting events, such as the Olympic Games. IMPORTANCE To restrict the potential transmission and infectivity of SARS-CoV-2, the use of liquid chalk has been a requirement in an active gym setting. However, its effectiveness has not been scientifically proven. Here, we show that the application of liquid chalk before or after virus inoculum significantly impacts recovery of infectious SARS-CoV-2 and influenza viruses but not noroviruses. Thus, our study has shown that the implementation and application of liquid chalk in communal social gym settings is effective in reducing the infectivity of respiratory viruses, and this supports the use of liquid chalk in major sporting events to restrict the impact of COVID-19 on our communities.

7.
Nat Commun ; 12(1): 3431, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103499

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Subject(s)
Reverse Genetics , SARS-CoV-2/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorocebus aethiops , Culicidae/virology , Furin/metabolism , Genome, Viral , HEK293 Cells , Humans , Mice , Mutation/genetics , NIH 3T3 Cells , Polymerase Chain Reaction , RAW 264.7 Cells , Receptors, Virus/metabolism , Vero Cells , Viral Proteins/chemistry , Virus Replication
8.
J Gen Virol ; 99(4): 596-609, 2018 04.
Article in English | MEDLINE | ID: mdl-29533743

ABSTRACT

Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.


Subject(s)
Aedes/virology , Anopheles/virology , Culex/virology , Mosquito Vectors/virology , Reoviridae Infections/virology , Reoviridae/isolation & purification , Aedes/physiology , Animals , Anopheles/physiology , Australia , China , Culex/physiology , Female , Genome, Viral , Genotype , Host Specificity , Humans , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/physiology , Phenotype , Phylogeny , Reoviridae/classification , Reoviridae/genetics , Reoviridae/physiology , Reoviridae Infections/transmission , Virus Replication
9.
Transfusion ; 56(6 Pt 2): 1503-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26644018

ABSTRACT

BACKGROUND: West Nile virus (WNV) is a threat to transfusion safety. WNV Kunjin strain (WNVKUN ) is endemic across parts of Australia; however, human infection is believed to be infrequent and is often associated with relatively minor symptoms. A virulent strain, closely related to WNVKUN (termed WNVNSW2011 ) was recently identified as the etiologic agent of encephalitis in Australian horses. The aim of this project was to investigate whether a commercially available WNV blood screening assay can detect different strains of WNVKUN , including the virulent WNVNSW2011 , in human blood donor samples. STUDY DESIGN AND METHODS: Plasma samples were spiked with four different strains of WNVKUN , as well as a prototype WNV strain, at high, medium, and low viral loads. Spiking was confirmed with real-time reverse transcription-polymerase chain reaction (RT-PCR), before testing with the Procleix WNV transcription-mediated amplification (TMA) blood screening assay (Grifols). RESULTS: All WNV strains used were detectable by RT-PCR after being spiked into plasma. Additionally, all viral spiked samples were reactive by WNV TMA. CONCLUSION: We experimentally demonstrate that a commercially available WNV blood screening assay can detect different strains of WNVKUN . Given that WNV can be transfusion transmissible, it is essential to confirm that emergent strains are detectable by existing blood screening methods.


Subject(s)
Blood Donors , Mass Screening/methods , Nucleic Acid Amplification Techniques/methods , West Nile virus/genetics , Animals , Horses , Humans , Mass Screening/standards , Nucleic Acid Amplification Techniques/standards , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Transfusion Reaction , West Nile Fever/prevention & control , West Nile Fever/transmission
10.
Evol Bioinform Online ; 12(Suppl 2): 35-44, 2016.
Article in English | MEDLINE | ID: mdl-28096646

ABSTRACT

Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction.

SELECTION OF CITATIONS
SEARCH DETAIL
...