Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 79(12): 615, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36460928

ABSTRACT

Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.


Subject(s)
Hepatitis E virus , Humans , Hepatitis E virus/genetics , Viral Replication Compartments , Capsid Proteins , Biological Transport , Antibodies, Monoclonal
2.
PLoS One ; 14(3): e0213203, 2019.
Article in English | MEDLINE | ID: mdl-30845158

ABSTRACT

Although sphingosine-1-phosphate receptor 1 (S1P1) has been shown to trigger several S1P targeted functions such as immune cell trafficking, cell proliferation, migration, or angiogenesis, tools that allow the accurate detection of endogenous S1P1 localization and trafficking remain to be obtained and validated. In this study, we developed and characterized a novel monoclonal S1P1 antibody. Mice were immunized with S1P1 produced in the yeast Pichia pastoris and nine hybridoma clones producing monoclonal antibodies were created. Using different technical approaches including Western blot, immunoprecipitation and immunocytochemistry, we show that a selected clone, hereinafter referred to as 2B9, recognizes human and mouse S1P1 in various cell lineages. The interaction between 2B9 and S1P1 is specific over receptor subtypes, as the antibody does not binds to S1P2 or S1P5 receptors. Using cell-imaging methods, we demonstrate that 2B9 binds to an epitope located at the intracellular domain of S1P1; reveals cytosolic and membrane localization of the endogenous S1P1; and receptor internalization upon S1P or FTY720-P stimulation. Finally, loss of 2B9 signal upon knockdown of endogenous S1P1 by specific small interference RNAs further confirms its specificity. 2B9 was also able to detect S1P1 in human kidney and spinal cord tissue by immunohistochemistry. Altogether, our results suggest that 2B9 could be a useful tool to detect, quantify or localize low amounts of endogenous S1P1 in various physiological and pathological processes.


Subject(s)
Antibodies, Monoclonal/immunology , Breast Neoplasms/metabolism , Fibroblasts/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Image Processing, Computer-Assisted/methods , Receptors, Lysosphingolipid/immunology , Receptors, Lysosphingolipid/metabolism , Animals , Breast Neoplasms/pathology , Cells, Cultured , Female , Fibroblasts/cytology , Humans , Immunization , Kidney/metabolism , Mice , Microscopy, Fluorescence , Sphingosine-1-Phosphate Receptors , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...