Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(18): 6738-6751, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725499

ABSTRACT

In the decade since the discovery of androglobin, a multi-domain hemoglobin of metazoans associated with ciliogenesis and spermatogenesis, there has been little advance in the knowledge of the biochemical and structural properties of this unusual member of the hemoglobin superfamily. Using a method for aligning remote homologues, coupled with molecular modelling and molecular dynamics, we have identified a novel structural alignment to other hemoglobins. This has led to the first stable recombinant expression and characterization of the circularly permuted globin domain. Exceptional for eukaryotic globins is that a tyrosine takes the place of the highly conserved phenylalanine in the CD1 position, a critical point in stabilizing the heme. A disulfide bond, similar to that found in neuroglobin, forms a closed loop around the heme pocket, taking the place of androglobin's missing CD loop and further supporting the heme pocket structure. Highly unusual in the globin superfamily is that the heme iron binds nitric oxide as a five-coordinate complex similar to other heme proteins that have nitric oxide storage functions. With rapid autoxidation and high nitrite reductase activity, the globin appears to be more tailored toward nitric oxide homeostasis or buffering. The use of our multi-template profile alignment method to yield the first biochemical characterisation of the circularly permuted globin domain of androglobin expands our knowledge of the fundamental functioning of this elusive protein and provides a pathway to better define the link between the biochemical traits of androglobin with proposed physiological functions.

2.
NAR Genom Bioinform ; 6(2): lqae058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800826

ABSTRACT

Antisense oligonucleotides (ASOs) offer ground-breaking possibilities for selective pharmacological intervention for any gene product-related disease. Therapeutic ASOs contain extensive chemical modifications that improve stability to enzymatic cleavage and modulate binding affinity relative to natural RNA/DNA. Molecular dynamics (MD) simulation can provide valuable insights into how such modifications affect ASO conformational sampling and target binding. However, force field parameters for chemically modified nucleic acids (NAs) are still underdeveloped. To bridge this gap, we developed parameters to allow simulations of ASOs with the widely applied phosphorothioate (PS) backbone modification, and validated these in extensive all-atom MD simulations of relevant PS-modified NA systems representing B-DNA, RNA, and DNA/RNA hybrid duplex structures. Compared to the corresponding natural NAs, single PS substitutions had marginal effects on the ordered DNA/RNA duplex, whereas substantial effects of phosphorothioation were observed in single-stranded RNA and B-DNA, corroborated by the experimentally derived structure data. We find that PS-modified NAs shift between high and low twist states, which could affect target recognition and protein interactions for phosphorothioated oligonucleotides. Furthermore, conformational sampling was markedly altered in the PS-modified ssRNA system compared to that of the natural oligonucleotide, indicating sequence-dependent effects on conformational preference that may in turn influence duplex formation.

3.
J Chem Inf Model ; 64(8): 3360-3374, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38597744

ABSTRACT

HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated. In this study, we investigated the conformational dynamics of Vpr helices to model the ion channel topology. First, we employed a series of multiscale simulations to investigate the specific structure of monomeric Vpr in a membrane model. During the lipid bilayer self-assembly coarse grain simulation, the C-terminal helix (residues 56-77) effectively formed the transmembrane region, while the N-terminal helix exhibited an amphipathic nature by associating horizontally with a single leaflet. All-atom molecular dynamics (MD) simulations of full-length Vpr inside a phospholipid bilayer show that the C-terminal helix remains very stable inside the bilayer core in a vertical orientation. Subsequently, using the predicted C-terminal helix orientation and conformation, various oligomeric states (ranging from tetramer to heptamer) possibly forming the Vpr ion channel were built and further evaluated. Among these models, the pentameric form exhibited consistent stability in MD simulations and displayed a compatible conformation for a water-assisted ion transport mechanism. This study provides structural insights into the ion channel activity of the Vpr protein and the foundation for developing therapeutics against HIV-1 Vpr-related conditions.


Subject(s)
Ion Channels , Lipid Bilayers , Molecular Dynamics Simulation , vpr Gene Products, Human Immunodeficiency Virus , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , vpr Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Protein Conformation , HIV-1/chemistry
4.
Comput Biol Med ; 158: 106852, 2023 05.
Article in English | MEDLINE | ID: mdl-37044047

ABSTRACT

The term cancer refers to a plethora of diseases characterized by the development of abnormal cells that divide uncontrollably and can infiltrate further proximal or distal body tissues. Each type of cancer can be defined by aggressiveness, localization, metabolism, and response to available treatments. Among the most common hallmarks of cancer is a more acidic intracellular microenvironment. Offset pH values are due to an excess of lactate and an increased hypoxia-inducible factor (HIF) expression, which leads to a hypoxic state and a metabolic shift towards glycolysis to produce adenosine-5'-triphosphate (ATP) necessary for cellular metabolism. Warburg's hypothesis underpins this concept, making glycolysis and its central enzyme pyruvate kinase (hPKM2), an ideal target for drug development. Using molecular docking and extensive molecular dynamics (MD) simulations we investigated the binding mode of phosphoenolpyruvate (PEP) inside the hPKM2 active site, and then evaluated a set of known bio-isosteric inhibitors to understand the differences caused by their substitutions on their binding mode. Ultimately, we propose a new molecular entity to hamper hPKM2, unbalance cellular energy, and possibly trigger autophagic mechanisms.


Subject(s)
Neoplasms , Humans , Ligands , Molecular Docking Simulation , Neoplasms/metabolism , Glycolysis , Adenosine Triphosphate , Tumor Microenvironment
5.
Comput Biol Chem ; 104: 107871, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084691

ABSTRACT

Nef is a small accessory protein pivotal in the HIV-1 viral replication cycle. It is a multifunctional protein and its interactions with kinases in host cells have been well characterized through many in vitro and structural studies. Nef forms a homodimer to activate the kinases and subsequently the phosphorylation pathways. The disruption of its homodimerization represents a valuable approach in the search for novel classes of antiretroviral. However, this research avenue is still underdeveloped as just a few Nef inhibitors have been reported so far, with very limited structural information about their mechanism of action. To address this issue, we have employed an in silico structure-based drug design strategy that combines de novo ligand design with molecular docking and extensive molecular dynamics simulations. Since the Nef pocket involved in homodimerization has high lipophilicity, the initial de novo-designed structures displayed poor drug-likeness and solubility. Taking information from the hydration sites within the homodimerization pocket, structural modifications in the initial lead compound have been introduced to improve the solubility and drug-likeness, without affecting the binding profile. We propose lead compounds that can be the starting point for further optimizations to deliver long-awaited, rationally designed Nef inhibitors.


Subject(s)
HIV-1 , Molecular Docking Simulation , Computer-Aided Design , Gene Products, nef , Computers
6.
Viruses ; 14(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36560795

ABSTRACT

The spike protein is key to SARS-CoV-2 high infectivity because it facilitates the receptor binding domain (RBD) encounter with ACE2. As targeting subunit S1 has not yet delivered an ACE2-binding inhibitor, we have assessed the druggability of the conserved segment of the spike protein stalk within subunit S2 by means of an integrated computational approach that combines the molecular docking of an optimized library of fragments with high-throughput molecular dynamics simulations. The high propensity of the spike protein to mutate in key regions that are responsible for the recognition of the human angiotensin-converting enzyme 2 (hACE2) or for the recognition of antibodies, has made subunit S1 of the spike protein difficult to target. Despite the inherent flexibility of the stalk region, our results suggest two hidden interhelical binding sites, whose accessibility is only partially hampered by glycan residues.


Subject(s)
COVID-19 , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Molecular Docking Simulation , Protein Domains , Protein Binding , Molecular Dynamics Simulation
7.
Nat Commun ; 13(1): 7013, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385145

ABSTRACT

The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Protein Binding , Molecular Dynamics Simulation
8.
Biomolecules ; 12(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36358957

ABSTRACT

After the SARS-CoV-2 Wuhan variant that gave rise to the pandemic, other variants named Delta, Omicron, and Omicron-2 sequentially became prevalent, with mutations spread around the viral genome, including on the spike (S) protein; in order to understand the resultant in gains in infectivity, we interrogated in silico both the equilibrium binding and the binding pathway of the virus' receptor-binding domain (RBD) to the angiotensin-converting enzyme 2 (ACE2) receptor. We interrogated the molecular recognition between the RBD of different variants and ACE2 through supervised molecular dynamics (SuMD) and classic molecular dynamics (MD) simulations to address the effect of mutations on the possible S protein binding pathways. Our results indicate that compensation between binding pathway efficiency and stability of the complex exists for the Omicron BA.1 receptor binding domain, while Omicron BA.2's mutations putatively improved the dynamic recognition of the ACE2 receptor, suggesting an evolutionary advantage over the previous strains.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Protein Binding , Peptidyl-Dipeptidase A/chemistry , COVID-19/genetics , Receptors, Virus/genetics , Mutation
9.
J Med Chem ; 65(21): 14864-14890, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36270633

ABSTRACT

A series of benzyloxy and phenoxy derivatives of the adenosine receptor agonists N6-cyclopentyl adenosine (CPA) and N6-cyclopentyl 5'-N-ethylcarboxamidoadenosine (CP-NECA) were synthesized, and their potency and selectivity were assessed. We observed that the most potent were the compounds with a halogen in the meta position on the aromatic ring of the benzyloxy- or phenoxycyclopentyl substituent. In general, the NECA-based compounds displayed greater A1R selectivity than the adenosine-based compounds, with N6-2-(3-bromobenzyloxy)cyclopentyl-NECA and N6-2-(3-methoxyphenoxy)cyclopentyl-NECA showing ∼1500-fold improved A1R selectivity compared to NECA. In addition, we quantified the compounds' affinity and kinetics of binding at both human and rat A1R using a NanoBRET binding assay and found that the halogen substituent in the benzyloxy- or phenoxycyclopentyl moiety seems to confer high affinity for the A1R. Molecular modeling studies suggested a hydrophobic subpocket as contributing to the A1R selectivity displayed. We believe that the identified selective potent A1R agonists are valuable tool compounds for adenosine receptor research.


Subject(s)
Purinergic P1 Receptor Agonists , Receptors, Purinergic P1 , Animals , Humans , Rats , Adenosine/chemistry , Adenosine-5'-(N-ethylcarboxamide) , Halogens , Structure-Activity Relationship
10.
Bioessays ; 44(9): e2200060, 2022 09.
Article in English | MEDLINE | ID: mdl-35843871

ABSTRACT

The SARS-CoV-2 virus is responsible for the COVID-19 pandemic the world experience since 2019. The protein responsible for the first steps of cell invasion, the spike protein, has probably received the most attention in light of its central role during infection. Computational approaches are among the tools employed by the scientific community in the enormous effort to study this new affliction. One of these methods, namely molecular dynamics (MD), has been used to characterize the function of the spike protein at the atomic level and unveil its structural features from a dynamic perspective. In this review, we focus on these main findings, including spike protein flexibility, rare S protein conformational changes, cryptic epitopes, the role of glycans, drug repurposing, and the effect of spike protein variants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Molecular Dynamics Simulation , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
11.
Nat Commun ; 13(1): 4150, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851064

ABSTRACT

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of ß-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.


Subject(s)
Analgesia , Depression , Adenosine/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P1
12.
Nat Commun ; 13(1): 92, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013280

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


Subject(s)
Exenatide/chemistry , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide-1 Receptor/chemistry , Oxyntomodulin/chemistry , Allosteric Regulation , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Exenatide/genetics , Exenatide/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , HEK293 Cells , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Mutation , Oxyntomodulin/genetics , Oxyntomodulin/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship
13.
Nat Chem Biol ; 18(3): 256-263, 2022 03.
Article in English | MEDLINE | ID: mdl-34937906

ABSTRACT

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Exenatide , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/chemistry , Peptides/chemistry , Protein Domains
14.
Front Mol Biosci ; 8: 720561, 2021.
Article in English | MEDLINE | ID: mdl-34513925

ABSTRACT

Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.

15.
Biochem Pharmacol ; 192: 114715, 2021 10.
Article in English | MEDLINE | ID: mdl-34339714

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and ß-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of ß-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or ß-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.


Subject(s)
Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Amino Acid Sequence , Animals , Binding Sites/drug effects , Binding Sites/physiology , COS Cells , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/pharmacology , HEK293 Cells , Humans , Mutation/physiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Structure, Secondary , Receptors, Gastrointestinal Hormone/chemistry
16.
Mol Metab ; 51: 101242, 2021 09.
Article in English | MEDLINE | ID: mdl-33933675

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 and glucagon receptor (GLP-1R/GCGR) co-agonism can maximise weight loss and improve glycaemic control in type 2 diabetes and obesity. In this study, we investigated the cellular and metabolic effects of modulating the balance between G protein and ß-arrestin-2 recruitment at GLP-1R and GCGR using oxyntomodulin (OXM)-derived co-agonists. This strategy has been previously shown to improve the duration of action of GLP-1R mono-agonists by reducing target desensitisation and downregulation. METHODS: Dipeptidyl dipeptidase-4 (DPP-4)-resistant OXM analogues were generated and assessed for a variety of cellular readouts. Molecular dynamic simulations were used to gain insights into the molecular interactions involved. In vivo studies were performed in mice to identify the effects on glucose homeostasis and weight loss. RESULTS: Ligand-specific reductions in ß-arrestin-2 recruitment were associated with slower GLP-1R internalisation and prolonged glucose-lowering action in vivo. The putative benefits of GCGR agonism were retained, with equivalent weight loss compared to the GLP-1R mono-agonist liraglutide despite a lesser degree of food intake suppression. The compounds tested showed only a minor degree of biased agonism between G protein and ß-arrestin-2 recruitment at both receptors and were best classified as partial agonists for the two pathways measured. CONCLUSIONS: Diminishing ß-arrestin-2 recruitment may be an effective way to increase the therapeutic efficacy of GLP-1R/GCGR co-agonists. These benefits can be achieved by partial rather than biased agonism.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology , Peptides/pharmacology , Receptors, Glucagon/agonists , Animals , Blood Glucose/analysis , Blood Glucose/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Disease Models, Animal , HEK293 Cells , Hepatocytes , Humans , Hypoglycemic Agents/therapeutic use , Islets of Langerhans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Mice , Oxyntomodulin/genetics , Peptides/genetics , Peptides/therapeutic use , Primary Cell Culture , Rats , Weight Loss/drug effects , beta-Arrestin 2/metabolism
17.
J Chem Inf Model ; 61(4): 2001-2015, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33779168

ABSTRACT

Despite being a target for about one-third of approved drugs, G protein-coupled receptors (GPCRs) still represent a tremendous reservoir for therapeutic strategies against diseases. For example, several cardiovascular and central nervous system conditions could benefit from clinical agents that activate the adenosine 1 receptor (A1R); however, the pursuit of A1R agonists for clinical use is usually impeded by both on- and off-target side effects. One of the possible strategies to overcome this issue is the development of positive allosteric modulators (PAMs) capable of selectively enhancing the effect of a specific receptor subtype and triggering functional selectivity (a phenomenon also referred to as bias). Intriguingly, besides enforcing the effect of agonists upon binding to an allosteric site, most of the A1R PAMs display intrinsic partial agonism and orthosteric competition with antagonists. To rationalize this behavior, we simulated the binding of the prototypical PAMs PD81723 and VCP171, the full-agonist NECA, the antagonist 13B, and the bitopic agonist VCP746. We propose that a single PAM can bind several A1R sites rather than a unique allosteric pocket, reconciling the structure-activity relationship and the mutagenesis results.


Subject(s)
Receptor, Adenosine A1 , Receptors, G-Protein-Coupled , Allosteric Regulation , Allosteric Site , Structure-Activity Relationship
18.
ACS Pharmacol Transl Sci ; 4(1): 314-326, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615181

ABSTRACT

Despite being among the most characterized G protein-coupled receptors (GPCRs), adenosine receptors (ARs) have always been a difficult target in drug design. To date, no agonist other than the natural effector and the diagnostic regadenoson has been approved for human use. Recently, the structure of the adenosine A1 receptor (A1R) was determined in the active, Gi protein complexed state; this has important repercussions for structure-based drug design. Here, we employed supervised molecular dynamics simulations and mutagenesis experiments to extend the structural knowledge of the binding of selective agonists to A1R. Our results identify new residues involved in the association and dissociation pathway, they suggest the binding mode of N6-cyclopentyladenosine (CPA) related ligands, and they highlight the dramatic effect that chemical modifications can have on the overall binding mechanism, paving the way for the rational development of a structure-kinetics relationship of A1R agonists.

19.
Chem Biol Drug Des ; 97(2): 231-236, 2021 02.
Article in English | MEDLINE | ID: mdl-32772476

ABSTRACT

The development of gut microbiota-targeted small molecules represents a promising platform for the identification of new therapeutics based on the implication of human gut bacteria with different diseases. Bacterial trimethylamine (TMA)-lyase (CutC) is expressed in gut bacteria and catalyzes the conversion of choline to TMA. The association of elevated TMA production with various disorders has directed research efforts toward identification of CutC inhibitors. Herein, we introduce peptidomimetics as a promising toolbox for the discovery of CutC inhibitors. Our approach starts with screening a library of peptidomimetics for intestinal metabolic stability followed by in vitro CutC inhibition. Compound 5 was identified from this screening platform with IC50 value of 5.9 ± 0.6 µM for CutC inhibition. Unlike previously reported CutC inhibitors, compound 5 possessed universal CutC inhibitory activity in different bacterial strains. Molecular dynamics simulations suggested a plausible binding site and inhibition mechanism for compound 5. Therefore, compound 5 is a promising lead for further structural optimization in the search for CutC-targeted small molecules.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Lyases/antagonists & inhibitors , Peptidomimetics/chemistry , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Binding Sites , Desulfovibrio desulfuricans/enzymology , Enzyme Inhibitors/metabolism , Gastrointestinal Microbiome , Humans , Inhibitory Concentration 50 , Kinetics , Lyases/metabolism , Methylamines/metabolism , Molecular Docking Simulation , Peptidomimetics/metabolism
20.
J Comput Aided Mol Des ; 35(2): 195-207, 2021 02.
Article in English | MEDLINE | ID: mdl-33103220

ABSTRACT

The recent outbreak of the respiratory syndrome-related coronavirus (SARS-CoV-2) is stimulating an unprecedented scientific campaign to alleviate the burden of the coronavirus disease (COVID-19). One line of research has focused on targeting SARS-CoV-2 proteins fundamental for its replication by repurposing drugs approved for other diseases. The first interaction between the virus and the host cell is mediated by the spike protein on the virus surface and the human angiotensin-converting enzyme (ACE2). Small molecules able to bind the receptor-binding domain (RBD) of the spike protein and disrupt the binding to ACE2 would offer an important tool for slowing, or even preventing, the infection. Here, we screened 2421 approved small molecules in silico and validated the docking outcomes through extensive molecular dynamics simulations. Out of six drugs characterized as putative RBD binders, the cephalosporin antibiotic cefsulodin was further assessed for its effect on the binding between the RBD and ACE2, suggesting that it is important to consider the dynamic formation of the heterodimer between RBD and ACE2 when judging any potential candidate.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Cefsulodin/chemistry , Cefsulodin/metabolism , Cefsulodin/pharmacology , Computer Simulation , Molecular Docking Simulation , Molecular Dynamics Simulation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...