Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Immun ; 25(2): 158-167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570727

ABSTRACT

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , CD8-Positive T-Lymphocytes , Adenoviridae/genetics , ChAdOx1 nCoV-19 , Leukocytes, Mononuclear , Gene Expression Profiling , Adaptive Immunity , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics
2.
Animals (Basel) ; 13(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003105

ABSTRACT

SARS-CoV-2 infects humans and a broad spectrum of animal species, such as pets, zoo animals, and nondomestic animals. Monitoring infection in animals is important in terms of the risk of interspecies transmission and the emergence of new viral variants. Economical, fast, efficient, and sensitive diagnostic tests are needed to analyze animal infection. Double-antigen sandwich ELISA has the advantage of being multispecies and can be used for detecting infections caused by pathogens that infect several animal hosts. This study aimed to develop a double-antigen sandwich ELISA using two SARS-CoV-2 proteins, N and RBD. We compared its performance, when using these proteins separately, with an indirect ELISA and with a surrogate virus neutralization test. Positive and negative controls from a cat population (n = 31) were evaluated to compare all of the tests. After confirming that double-antigen sandwich ELISA with both RBD and N proteins had the best performance (AUC= 88%), the cutoff was adjusted using positive and negative samples from cats, humans (n = 32) and guinea pigs (n = 3). The use of samples from tigers (n = 2) and rats (n = 51) showed good agreement with the results previously obtained using the microneutralization test. Additionally, a cohort of samples from dogs with unknown infection status was evaluated. These results show that using two SARS-CoV-2 proteins in the double-antigen sandwich ELISA increases its performance and turns it into a valuable assay with which to monitor previous infection caused by SARS-CoV-2 in different animal species.

3.
Pathogens ; 12(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375525

ABSTRACT

SARS-CoV-2 mainly affects humans; however, it is important to monitor the infection of companion and wild animals as possible reservoirs of this virus. In this sense, seroprevalence studies in companion animals, such as dogs and cats, provide important information about the epidemiology of SARS-CoV-2. This study aimed to evaluate the seroprevalence of neutralizing antibodies (nAbs) against the ancestral strain and the Omicron BA.1 subvariant in dogs and cats in Mexico. Six hundred and two samples were obtained from dogs (n = 574) and cats (n = 28). These samples were collected from the end of 2020 to December 2021 from different regions of Mexico. The presence of nAbs was evaluated using a plaque reduction neutralization test (PRNT) and microneutralization (MN) assays. The results showed that 14.2% of cats and 1.5% of dogs presented nAbs against the ancestral strain of SARS-CoV-2. The analysis of nAbs against Omicron BA.1 in cats showed the same percentage of positive animals but a reduced titer. In dogs, 1.2% showed nAbs against Omicron BA.1. These results indicate that nAbs were more frequent in cats than in dogs and that these nAbs have a lower capacity to neutralize the subvariant Omicron BA.1.

SELECTION OF CITATIONS
SEARCH DETAIL
...