Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e29858, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698968

ABSTRACT

Background and aims: Glioblastoma (GBM) is an aggressive primary brain cancer with no promising curative therapies. It has been indicated that MSCs can interact with the tumour microenvironment (TME) through the secretion of soluble mediators regulating intercellular signalling within the TME. TLRs are a multigene family of pattern recognition receptors with evolutionarily conserved regions and are widely expressed in immune and other body cells. MSCs by TLRs can recognize conserved molecular components (DAPMPs and PAPMPs) and activate signalling pathways, which regulate immune and inflammatory responses. MSCs may exert immunomodulatory functions through interaction with their expressed toll-like receptors (TLRs) and exert a protective effect against tumour antigens. As an emerging approach, we aimed to monitor the U87 cell line growth, migration and death markers following specific TLR3/4-primed-MSCs-CMs treatment. Methods and results: We investigated the phenotypic and functional outcomes of primed-CMs and glioma cell line co-culture following short-term, low-dose TLR3/4 priming. The gene expression profile of target genes, including apoptotic markers and related genes, was analyzed by qRT-PCR. MicroRNA-Seq examined the miRNA expression patterns, and flow cytometry evaluated the cell viability and cycle stages. The results showed significant changes in apoptosis and likely necroptosis-related markers following TLR3/4-primed-MSCs-CMs exposure in the glioma cell line. Notably, we observed a considerable induction of selective pro-apoptotic markers and both the early and late stages of apoptosis in treated U87 cell lines. Additionally, the migration rate of glioma cells significantly decreased following MSCs-CM treatment. Conclusion: Our findings confirmed that the exposure of TLR3/4-activated-MSCs-CMs with glioma tumour cells possibly changes the immunogenicity of the tumour microenvironment and induces immunogenic programmed cell death. Our results can support the idea that TLR3/4-primed-MSCs can lead to innate immune-mediated cell death and modify tumour cell biology in invasive and metastatic cancers.

2.
Int J Biol Macromol ; 225: 1049-1071, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36414082

ABSTRACT

Cardiovascular diseases (CVDs) are a group of disorders with major global health consequences. The prevalence of CVDs continues to grow due to population-aging and lifestyle modifications. Non-coding RNAs (ncRNAs) as key regulators of cell signaling pathways have gained attention in the occurrence and development of CVDs. Exosomal-lncRNAs (exos-lncRNAs) are emerging biomarkers due to their high sensitivity and specificity, stability, accuracy and accessibility in the biological fluids. Recently, circulatory and exos-based-lncRNAs are emerging and novel bio-tools in various pathogenic conditions. It is worth mentioning that dysregulation of these molecules has been found in different types of CVDs. In this regard, we aimed to discuss the knowledge gaps and suggest research priorities regarding circulatory and exos-lncRNAs as novel bio-tools and therapeutic targets for CVDs.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , RNA, Long Noncoding , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , RNA, Long Noncoding/genetics , Biomarkers , Aging
3.
Hum Immunol ; 83(8-9): 618-627, 2022.
Article in English | MEDLINE | ID: mdl-35717260

ABSTRACT

Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.


Subject(s)
Autoimmune Diseases , Exosomes , RNA, Long Noncoding , Autoimmune Diseases/diagnosis , Autoimmune Diseases/genetics , Biomarkers/metabolism , Exosomes/genetics , Exosomes/metabolism , Humans , Prognosis , RNA, Long Noncoding/genetics
4.
Biotechnol Lett ; 43(5): 981-994, 2021 May.
Article in English | MEDLINE | ID: mdl-33515341

ABSTRACT

OBJECTIVE: Tumor suppressor miRNAs, miR-15a and miR-16-1, with high-specificity and oncogenic targeting of Bcl-2, can target tumor tissues. Disadvantages of the clinical application of free miRNAs include poor cellular uptake and instability in plasma, which can be partially improved by using nanocarriers to deliver anti-cancer agents to the tumor cell. METHOD: In this study, cationic niosomes were designed and optimized with the specific formulation. Then, the physical characteristics, the cytotoxicity, the impact of transfected miRNAs on the expression of the Bcl-2 gene, and the apoptosis rate of the different formulation into prostate cancer cell were determined. RESULTS: The optimum formulation containing tween-60: cholesterol: DOTAP: DSPE-PEG2000 at 70:30:25:5 demonstrated that the vesicle size and zeta potentials were 69.7 nm and + 14.83 mV, respectively. Additionally, noisome-loaded miRNAs had higher toxicity against cancer cells comparing with free forms. The transfection of PC3 cells with the combination therapy of nanocarriers loaded of two miRNAs led to a significant decrease in the expression of the Bcl-2 gene and increased the degree of cell death in PC3 cells compared with other treatment groups, and the synergistic effects of co-delivery of miR-15a and miR-16-1 on prostate cancer cells were shown. CONCLUSION: According to the results, it seems the designed niosomes containing miR-15a and miR-16-1 can target the Bcl-2 gene and provide a cheap, applicable, cost-effective, and safe drug delivery system against prostate cancer.


Subject(s)
Apoptosis/drug effects , Liposomes/chemistry , MicroRNAs/administration & dosage , Polyethylene Glycols/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Survival/drug effects , Drug Delivery Systems , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , MicroRNAs/chemistry , MicroRNAs/pharmacokinetics , PC-3 Cells , Phospholipids/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Surface-Active Agents/chemistry
5.
Int J Reprod Biomed ; 18(5): 347-358, 2020 May.
Article in English | MEDLINE | ID: mdl-32637863

ABSTRACT

BACKGROUND: Using blood-based biomarkers such as microRNAs (miRNAs) may allow particularly effective and minimally invasive diagnosis and treatment of endometriosis. Objective: We evaluated the differential expression of circulating miRNA-185-5p (miR-185-5p), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) target genes between endometriosis and healthy women. MATERIALS AND METHODS: 25 women with a history of endometriosis (grad III-IV) diagnosed by laparoscopy as the case group and 25 women without endometriosis underwent laparoscopy for ovarian cysts or pelvic pain as the control group were enrolled in this case-control study. Blood samples were obtained, and total RNA was used for high-throughput small RNA sequencing, and this was confirmed by means of quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: miRNA expression profiling using non-coding RNA sequencing revealed that one miRNA including miR-185-5p was significantly down-regulated in the case group compared with the controls. The qRT-PCR results showed significant downregulation of the expression level of miR-185-5p (p < 0.01) in the plasma of the case group. Receiver operating characteristic (ROC) curve analysis showed the area of miR-185-5p under the ROC curve for endometriosis diagnosis was 0.919 (p < 0.001). The RT-PCR results demonstrated that there was no significant difference in the expression of VEGF and PDGF mRNA of blood samples in the cases compared to the control group (PDGF, p = 0.09 and VEGF, p = 0.36). CONCLUSION: The low expression of miR-185-5p in the plasma of women with endometriosis could be employed as an important non-invasive biomarker for early detection and screening of endometriosis by blood samples.

6.
Biomed Pharmacother ; 127: 110118, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32244195

ABSTRACT

OBJECTIVE: In the current study we have stimulated the efficacy of plasmonic nanoparticles (NPs) by laser hyperthermia to achieve a less invasive method for tumor photothermal therapy of benign prostatic hyperplasia (BPH). METHODS: The levels of apoptosis on induced BPH in rats were assessed after treatment and revealed and recorded by various assayed. Moreover, the expression of caspases was considered to demonstrate the apoptotic pathways due to laser induced plasmonic NPs. RESULTS: In the Laser + NPs group prostate size of induced BPH decreased. Laser + NPs also decreased prostate specific antigen in comparison with the BPH groups. Furthermore, Laser + NPs attenuated BPH histopathologic indices in the rats. Laser + NPs induced apoptosis in prostatic epithelial cells via caspase-1 pathway. CONCLUSIONS: Altogether, the approach and findings from this study can be applied to introduce the laser irritated NPs method as a novel and less invasive therapy for patients suffering from BPH.


Subject(s)
Apoptosis , Lasers , Nanotubes, Carbon , Photothermal Therapy/methods , Prostatic Hyperplasia/therapy , Animals , Caspase 1/metabolism , Male , Prostate-Specific Antigen/metabolism , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Rats , Testosterone
7.
Iran J Pharm Res ; 19(3): 509-519, 2020.
Article in English | MEDLINE | ID: mdl-33680048

ABSTRACT

Cisplatin is a common agent which is used to treat Epithelial Ovarian Cancer (EOC), but cisplatin resistance is a major obstacle in successful treatment of ovarian cancer. Aberration in epigenetic changes play an important role in disregulation of gene expression. MiR-152 and miR-148a are frequently down-regulated in EOC due to promoter hyper-methylation. DNA methyltransferase1 (DNMT1), the main enzyme in maintenance of the pattern of DNA methylation, is one of the targets of miR-152 and miR-148a. Aberrantly up-regulation of DNMT1 is responsible for silencing of tumor suppressor genes in carcinogenesis. We hypothesized that re-expression of miR-152 and miR-148a and consequently down-regulation of DNMT1 may resensitize cancerous cells to chemotherapeutics agents. The aim of the present study is to investigate the effect of 5-azacytidine (5-Aza) and Trichostatin A on miR-152 and miR-148a expression in A2780CP ovarian cancer cell line. Optimal doses of 5-Azacitidine and TSA were measured by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A2780CP cell line was treated by each drugs, alone or in combination and the expression of miR-148a, miR-152 and DNMT1 was evaluated by Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR). The results revealed that TSA and 5-Azacytidine are able to revive the expression of miR-148a and miR-152 genes and mediate growth inhibition of epithelial ovarian cancer cells. The present study suggests that re-expression of miR-148a and miR-152 by epigenetic therapy aiming to DNMT1 suppression might resensitize resistant ovarian tumors to conventional chemotherapy.

8.
EXCLI J ; 17: 576-589, 2018.
Article in English | MEDLINE | ID: mdl-30108462

ABSTRACT

Human mesenchymal stem cells (hMSCs) have remarkable potential for use in regenerative medicine. However, one of the great challenges is preserving their potency for long time. This study investigated the effect of miRNA ectopic expression on their proliferation and also on the expression level of Parp1 as an epigenetic switch preserving pluripotency in hMSCs. A cationic liposome was prepared as an efficient carrier for miRNA delivery. The miRNA loading efficiency and physical stability of vesicles were measured, and their scanning electron microscopic shapes determined. hMSCs were transfected with miR-302a and miR-34a followed by assessment of their proliferation potency with MTT assay and measurement of the expression of Parp1 by quantitative polymerase chain reaction (QPCR). Cell transfection with miR-302a and miR-34a efficiently and differentially affects the proliferation potency of hMSCs and the expression level of Parp1 as the key epigenetic factor involved in pluripotency. While miR-302a increases Parp1 expression, miR-34a suppresses it significantly, showing differential effects. Our results demonstrated that miRNA-based treatments represent efficient therapeutic systems and hold a great promise for future use in regenerative medicine through modification of hMSC pluripotency and epigenome.

9.
Cardiol Res ; 9(2): 99-106, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29755627

ABSTRACT

Infective endocarditis (IE) can be diagnosed using the Duke criteria, which cannot be conclusive especially when the results of blood cultures are negative. This study aimed at using real-time polymerase chain reaction (PCR) technique to isolate bacteria present in whole blood samples of patients with definitive IE on the basis of the method designed in this study. This laboratory and test study was conducted on 20 whole blood samples taken from patients with definitive IE. Real-time PCR of the 16s rRNA was utilized to directly analyze whole blood samples to diagnose bacterial IE. Of 20 whole blood samples with definitive IE, only one blood culture (5%) was positive and the isolated bacterium belonged to Streptococci viridans group. Also, 13 whole blood samples were positive using real-time PCR technique. The isolated bacteria were Enterococcus faecalis with seven (35%) cases, Streptococcus gallolyticus with two (10%) cases, Streptococcus mutans with one (5%) case, Streptococcus sanguinis with one (5%) case, Streptococcus salivarius with one (5%) case, and Staphylococcus aureus with one (5%) case. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using real-time PCR technique were 65%, 100%, 100%, and 74%, respectively. The developed real-time PCR method allows us to detect bacteria in whole blood samples and is much more sensitive than culturing method. It also permits the differentiation of the main group of bacteria within a few hours for IE.

10.
Ageing Res Rev ; 40: 120-141, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28993289

ABSTRACT

Cellular senescence (CS) is underlying mechanism of organism aging and is closely interconnected with age-related diseases (ARDs). Thus, any attempt that influences CS, may be undertaken to reverse or inhibit senescence, whereby could prolong healthy life span. Until now, two main proposes are epigenetic and genetic modifications of cell fate. The first one concerns rejuvenation through effective reprogramming in cells undergoing senescence, or derived from very old or progeroid patients, by which is effective in vitro in induced pluripotent stem cells (iPSCs). The second approach concerns modification of senescence signaling pathways like as IGF-induced agents. However, senescence research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of senescence is controlled, at least to some extent, by epigenetic pathways and biochemical processes conserved in evolution. In this review we try to concentrate on very specific pathways (DNA damage response, DDR, and epigenetic modifiers) and very specific determinants (senescence-associated secretory phenotype, SASP-miRNAs) of human premature aging. A major challenge is to dissect the interconnectedness between the candidate elements and their relative contributions to aging, with the final goal of identifying new opportunities for design of novel anti-aging treatments or avoidance of age-associated manifestations. While knowing that aging is unavoidable and we cannot expect its elimination, but prolonging healthy life span is a goal worth serious consideration.


Subject(s)
Aging/metabolism , Cellular Senescence/physiology , Epigenesis, Genetic/physiology , MicroRNAs/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Sirtuin 1/metabolism , Aging/genetics , Animals , Cell Differentiation/physiology , Humans , MicroRNAs/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Signal Transduction/physiology , Sirtuin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL