Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(17): 8650-8660, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38618947

ABSTRACT

Driven by their excellent conductivity and redox properties, metal tellurides (MTes) are increasingly capturing the spotlight across various fields. These properties position MTes as favorable materials for next-generation electrochemical devices. Herein, we introduce a novel, self-sustained approach to creating a yolk-shelled electrode material. Our process begins with a metal-organic framework, specifically a CoFe-layered double hydroxide-zeolitic imidazolate framework67 (ZIF67) yolk-shelled structure (CFLDH-ZIF67). This structure is synthesized in a single step and transformed into CuCoLDH nanocages. The resulting CuCoFeLDH-CuCoLDH yolk-shelled microrods (CCFLDH-CCLDHYSMRs) are formed through an ion-exchange reaction. These are then converted into CuCoFeTe-CuCoTe yolk-shelled microrods (CCFT-CCTYSMRs) by a tellurization reaction. Benefiting from their structural and compositional advantages, the CCFT-CCTYSMR electrode demonstrates superior performance. It exhibits a fabulous capacity of 1512 C g-1 and maintains an impressive 84.45% capacity retention at 45 A g-1. Additionally, it shows a remarkable capacity retention of 91.86% after 10 000 cycles. A significant achievement of this research is the development of an activated carbon (AC)||CCFT-CCTYSMR hybrid supercapacitor. This supercapacitor achieves a good energy density (Eden) of 63.46 W h kg-1 at a power density (Pden) of 803.80 W kg-1 and retains 88.95% of its capacity after 10 000 cycles. These results highlight the potential of telluride-based materials in advanced energy storage applications, marking a step forward in the development of high-energy, long-life hybrid supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...