Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338943

ABSTRACT

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Melanoma , Humans , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA Damage/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Melanoma/genetics , Oncogenes , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics
3.
Cell Rep ; 42(5): 112490, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37163374

ABSTRACT

Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.


Subject(s)
Human Growth Hormone , Receptors, Somatotropin , Receptors, Somatotropin/metabolism , Janus Kinase 2/metabolism , Signal Transduction , Growth Hormone/metabolism , Human Growth Hormone/metabolism , Tyrosine/metabolism , Phosphorylation
4.
Cytokine ; 165: 156167, 2023 05.
Article in English | MEDLINE | ID: mdl-36934508

ABSTRACT

Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.


Subject(s)
Cytokines , Suppressor of Cytokine Signaling 1 Protein , src Homology Domains , Animals , Humans , Mice , Cytokines/metabolism , Phosphorylation , Signal Transduction/physiology , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , TYK2 Kinase/metabolism
5.
ACS Chem Biol ; 17(2): 449-462, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34989544

ABSTRACT

Suppressor of cytokine signaling 1 (SOCS1) has emerged as a potential therapeutic target in inflammatory and viral diseases. SOCS1 operates via its kinase inhibitory region, Src homology 2 (SH2) domain, and SOCS box to negatively regulate the Janus kinase/signal transducers and activators of transcription signaling pathway. In this study, we utilized native phosphotyrosine peptide substrates as a starting point to iteratively explore the requirement of each amino acid position to target the SH2 domain of SOCS1. We show that Met, Thr, Thr, Val, and Asp in the respective -1, +1, +2, +3, and +5 positions within the peptide substrate are favored for binding to the SOCS1-SH2 domain and identifying several phosphotyrosine peptides that have potent SOCS1 binding affinity with IC50 values ranging from 20 to 70 nM and greater than 100-fold selectivity against the closely related SOCS family proteins, CIS, SOCS2, and SOCS3. The optimized phosphotyrosine peptide was shown to stabilize SOCS1 in a thermal shift assay using cell lysates and inhibited SOCS1-mediated ubiquitination of a target substrate in a biochemical assay. Collectively, these data provide the framework to develop cell-permeable peptidomimetics that further investigate the potential of the SOCS1-SH2 domain as a therapeutic target in inflammatory and viral diseases.


Subject(s)
Suppressor of Cytokine Signaling Proteins , src Homology Domains , Phosphotyrosine/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/chemistry , Ubiquitination
6.
Nat Commun ; 12(1): 7032, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857742

ABSTRACT

Suppressor of cytokine signaling (SOCS)2 protein is a key negative regulator of the growth hormone (GH) and Janus kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) signaling cascade. The central SOCS2-Src homology 2 (SH2) domain is characteristic of the SOCS family proteins and is an important module that facilitates recognition of targets bearing phosphorylated tyrosine (pTyr) residues. Here we identify an exosite on the SOCS2-SH2 domain which, when bound to a non-phosphorylated peptide (F3), enhances SH2 affinity for canonical phosphorylated ligands. Solution of the SOCS2/F3 crystal structure reveals F3 as an α-helix which binds on the opposite side of the SH2 domain to the phosphopeptide binding site. F3:exosite binding appears to stabilise the SOCS2-SH2 domain, resulting in slower dissociation of phosphorylated ligands and consequently, enhances binding affinity. This biophysical enhancement of SH2:pTyr binding affinity translates to increase SOCS2 inhibition of GH signaling.


Subject(s)
Suppressor of Cytokine Signaling Proteins/chemistry , Tyrosine/chemistry , A549 Cells , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Models, Molecular , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Tyrosine/metabolism
7.
Article in English | MEDLINE | ID: mdl-29487568

ABSTRACT

The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

8.
Neoplasia ; 15(8): 975-88, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23908597

ABSTRACT

We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified 14 dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2(mutant) endometrial cancers (ECs). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors, whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2(mutant) cell lines, three of seven showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2(N550K) in JHUEM-2 cells (FGFR2(C383R)) conferred resistance (about five-fold) to PD173074, providing independent data that FGFR2(N550K) can be associated with drug resistance. Biochemical in vitro kinase analyses also show that ponatinib is more effective than dovitinib at inhibiting FGFR2(N550K). We propose that tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.


Subject(s)
Benzimidazoles/pharmacology , Imidazoles/pharmacology , Mutation , Pyridazines/pharmacology , Pyrimidines/pharmacology , Quinolones/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adenosine Triphosphate/metabolism , Animals , Binding Sites/genetics , Biocatalysis/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Electrophoresis, Polyacrylamide Gel , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Female , Humans , Inhibitory Concentration 50 , Models, Molecular , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...