Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 9(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-33153033

ABSTRACT

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.


Subject(s)
Amino Acids/metabolism , PTEN Phosphohydrolase/metabolism , Survival of Motor Neuron 1 Protein/chemistry , Survival of Motor Neuron 1 Protein/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans , Cell Line, Tumor , Cell Nucleus/metabolism , Gene Knockdown Techniques , Humans , Mice , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation , Phosphoserine/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , Proteolysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...