Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 942: 173718, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38848925

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.


Subject(s)
Forests , Mycorrhizae , Soil Microbiology , Trees , Mycorrhizae/physiology , Ethiopia , Trees/microbiology , Soil/chemistry
2.
PLoS One ; 18(11): e0294633, 2023.
Article in English | MEDLINE | ID: mdl-38019803

ABSTRACT

In Ethiopia, Pinus radiata and Pinus patula are extensively cultivated. Both plantations frequently serve as habitats for edible fungi, providing economic and ecological importance. Our study aims were: (i) to investigate how plantation age and tree species influence the variety of edible fungi and sporocarps production; (ii) to determine edaphic factors contributing to variations in sporocarps composition; and (iii) to establish a relationship between the most influencing edaphic factors and the production of valuable edible mushrooms for both plantation types. Sporocarps were collected weekly from permanent plots (100 m2) established in 5-, 14-, and 28-year-old stands of both species in 2020. From each plot, composite soil samples were also collected to determine explanatory edaphic variables for sporocarps production and composition. A total of 24 edible species, comprising 21 saprophytic and three ectomycorrhizal ones were identified. Agaricus campestroides, Morchella sp., Suillus luteus, Lepista sordida, and Tylopilus niger were found in both plantations. Sporocarp yields showed significant variation, with the highest mean production in 28-year-old stands of both Pinus stands. Differences in sporocarps variety were also observed between the two plantations, influenced by factors such as pH, nitrogen, phosphorus, potassium, and cation exchange capacity. Bovista dermoxantha, Coprinellus domesticus, and A. campestroides made contributions to the variety. The linear regression models indicated that the abundance of specific fungi was significantly predicted by organic matter. This insight into the nutrient requirements of various fungal species can inform for a better plantation management to produce both wood and non-wood forest products. Additionally, higher sporocarps production in older stands suggests that retaining patches of mature trees after the final cut can enhance fungal habitat, promoting diversity and yield. Thus, implementing this approach could provide supplementary income opportunities from mushroom sales and enhance the economic outputs of plantations, while mature trees could serve as a source of fungal inoculum for new plantations.


Subject(s)
Agaricales , Mycorrhizae , Pinus , Trees/microbiology , Ecosystem , Forests , Pinus/microbiology , Soil
3.
J Fungi (Basel) ; 9(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37623582

ABSTRACT

Edible mushrooms are seen as a way of increasing dietary diversity and achieving food security in Ethiopia. The aim of this study was to develop substrates using locally available agro-industrial by-products and animal manures to enhance the production of Shiitake (Lentinula edodes) mushrooms in Ethiopia. The hypothesis was L. edodes mushroom production on seven different substrates: 100% sugarcane bagasse (S1), 80% sugarcane bagasse, 20% cow dung (S2), horse manure (S3), chicken manure (S4), cottonseed hulls (S5), sugarcane filter cake (S6), and sugarcane trash (S7). Mushroom yield and biological efficiency were significantly affected by substrate type (p < 0.05). A significantly higher yield (434.33 g/500 g of substrate) and biological efficiency (86.83%) were obtained using substrate S4 while lower yield (120.33 g/500 g) and biological efficiency (24.33%) were obtained using substrate S7 than when using other substrates. The largest first flush of mushrooms was obtained on S4, and five flushes were produced on this substrate. S4 also had the highest biological efficiency, the highest nitrogen content, and the lowest C:N. Chicken manure is rich in nitrogen, magnesium, calcium, and potassium, which are crucial for Shiitake mushroom growth. Thus, substrate S4 would be a viable option for cultivating Shiitake mushrooms, particularly in regions where chicken manure is readily available. Substrate S2 also provided high yields and rapid fructification and would be a suitable alternative for Shiitake mushroom cultivation.

4.
Sci Total Environ ; 892: 164752, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37315593

ABSTRACT

Straw helimulching was applied to an area with a high soil erosion risk one month after the Navalacruz megafire (Iberian Central System, Ávila, Spain) to mitigate soil erosion and to maintain soil quality. To determine whether the soil fungal community, which is key to soil and vegetation recovery after fire, is altered by straw mulching, we examined the effect of helimulching one year after its application. Three hillside zones were chosen with two treatments in each zone (mulched and non-mulched plots), with three replicates of each treatment. Chemical and genomic DNA analyses of soil samples from mulched and non-mulched plots were performed to assess the soil characteristics and the soil fungal community composition and abundance. The total fungal operational taxonomic unit richness and abundance did not differ between treatments. However, there was an increase in the richness of litter saprotrophs, plant pathogens and wood saprotrophs associated with the application of straw mulch. The total fungal composition of mulched and non-mulched plots differed significantly. Fungal composition at the phylum level correlated with the soil potassium content and marginally with the pH and phosphorus content. The application of mulch promoted the dominance of saprotrophic functional groups. Fungal composition according to guilds was also significantly different between treatments. As conclusion, the application of mulch could mean a faster recovery of saprotrophic functional groups that will be responsible for decomposing the available dead fine fuel.


Subject(s)
Fires , Mycobiome , Wildfires , Ecosystem , Soil/chemistry , Soil Microbiology
5.
Sci Rep ; 13(1): 10085, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344617

ABSTRACT

Oak forests accompanied by Cistus species are a common landscape in the Mediterranean basin. It is argued that Cistus dominated fields serve as recruitment areas for Quercus seedlings, as they help in the transmission of the fungal community through vegetative succession in these ecosystems. To test these assumptions, we analyzed the fungal community in terms of its richness and composition, taking into account the effects of host (Oaks vs. Cistus) and forest structure, mainly based on age. Edaphic variables related to the different structures were also analyzed to examine how they evolve through succession and relate to shifts in the fungal community. No differences in fungal richness were observed between old Cistus stands and younger Quercus, while a brief increase in ECM richness was observed. Community composition also showed a greater overlap between old Cistus and young Quercus stands. We suggest that the most important step in fungal transfer from one host to another is the shift from the oldest Cistus fields to the youngest Quercus stands, with the genera Amanita, Cortinarius, Lactarius, Inocybe, Russula, and Tomentella probably playing a major role. In summary, our work has also revealed the network of fungal community structure in the succession of Cistus to Oak stands, it would suggest that the fungi share niches and significantly enhance the ecological setting of the transition from Cistus to Oak stands.


Subject(s)
Agaricales , Mycobiome , Mycorrhizae , Quercus , Ecosystem , Quercus/microbiology , Biodiversity , Forests
6.
Sci Total Environ ; 875: 162676, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36894081

ABSTRACT

Cistus scrublands are pyrophytic ecosystems and occur widely across Mediterranean regions. Management of these scrublands is critical to prevent major disturbances, such as recurring wildfires. This is because management appears to compromise the synergies necessary for forest health and the provision of ecosystem services. Furthermore, it supports high microbial diversity, opening questions of how forest management practices impact belowground associated diversity as research related to this issue is scarce. This study aims to investigate the effects of different fire prevention treatments and site history on bacterial and fungi co-response and co-occurrence patterns over a fire-risky scrubland ecosystem. Two different site histories were studied by applying three different fire prevention treatments and samples were analyzed by amplification and sequencing of ITS2 and 16S rDNA for fungi and bacteria, respectively. The data revealed that site history, especially regarding fire occurrence, strongly influenced the microbial community. Young burnt areas tended to have a more homogeneous and lower microbial diversity, suggesting environmental filtering to a heat-resistant community. In comparison, young clearing history also showed a significant impact on the fungal community but not on the bacteria. Some bacteria genera were efficient predictors of fungal diversity and richness. For instance, Ktedonobacter and Desertibacter were a predictor of the presence of the edible mycorrhizal bolete Boletus edulis. These results demonstrate fungal and bacterial community co-response to fire prevention treatments and provide new tools for forecasting forest management impacts on microbial communities.


Subject(s)
Fires , Microbiota , Mycobiome , Ecosystem , Bacteria , Forests , Soil Microbiology , Soil
7.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36294588

ABSTRACT

Ethiopian forests are rich in valuable types of non-wood forest products, including mushrooms. However, despite their nutritional, economic, and ecological importance, wild edible mushrooms have been given little attention and are rarely documented in Ethiopia. In this study, we assessed mushroom production levels in natural and plantation forests and the influence of climate and environmental variables on mushroom production. Sporocarps were sampled weekly from July to August 2019 at a set of permanent plots (100 m2) in both forest systems. We analyzed 63 plots to quantify sporocarp species' richness and fresh weight as well as to elucidate the degree of influence of forest types and site conditions, including soil and climate. Morphological analyses were used to identify fungi. In total, we recorded 64 wild edible fungal species belonging to 31 genera and 21 families from the plots established in the natural and plantation forests. A significantly greater total number of edible fungi were collected from natural forests (n = 40 species) than from plantations. Saprotrophs (92.19%) were the dominant guild whereas ectomycorrhizal fungi represented only 6.25% of species. Ecologically and economically important fungal species such as Agaricus campestroides, Tylopilus niger, Suillus luteus, Tricholoma portentosum, and Morchella americana were collected. The sporocarp yield obtained from plantation forests (2097.57 kg ha-1 yr-1) was significantly greater than that obtained from natural forests (731.18 kg ha-1 yr-1). The fungal community composition based on sporocarp production was mainly correlated with the organic matter, available phosphorus, and total nitrogen content of the soil, and with the daily minimum temperature during collection. Accordingly, improving edible species' richness and sporocarp production by maintaining ecosystem integrity represents a way of adding economic value to forests and maintaining biological diversity, while providing wood and non-wood forest products; we propose that this approach is imperative for managing Ethiopian forests.

8.
Sci Rep ; 12(1): 4817, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314738

ABSTRACT

Most of the Dry Afromontane forests in the northern part of Ethiopia are located around church territories and, hence, are called church forests. These forests are biodiversity islands and provide key ecosystem services to local communities. A previous study of church forest fungal species was based on sporocarp collections. However, to obtain a complete picture of the fungal community, the total fungal community present in the soil needs to be analyzed. This information is important to integrate church forests into global biodiversity conservation strategies and to understand what actions are required to conserve church forests and their biological components, including fungi, which are known for their exceptionally high diversity levels. We assessed soil fungal communities in three church forests using ITS2 rDNA metabarcoding. In total, 5152 fungal operational taxonomic units representing 16 fungal phyla were identified. Saprotrophs followed by ectomycorrhizal fungi and animal pathogens dominated fungal communities. Significant differences in diversity and richness were observed between forests. Non-metric multidimensional scaling confirmed that fungal community composition differed in each forest. The composition was influenced by climatic, edaphic, vegetation, and spatial variables. Linear relationships were found between tree basal area and the abundance of total fungi and trophic groups. Forest management strategies that consider cover, tree density, enrichment plantations of indigenous host tree species, and environmental factors would offer suitable habitats for fungal diversity, production, and function in these forest systems. The application of the baseline information obtained in this study could assist other countries with similar forest conservation issues due to deforestation and forest fragmentation.


Subject(s)
Mycobiome , Mycorrhizae , Biodiversity , Ecosystem , Ethiopia , Forests , Fungi/genetics , Mycorrhizae/genetics , Soil , Soil Microbiology , Trees
9.
J Fungi (Basel) ; 7(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575740

ABSTRACT

This study is conducted in the short-rotation plantations from the Afromontane Region of Ethiopia. Sporocarps were sampled weekly in a set of permanent plots (100 m2) in young, medium-aged, and mature Pinus radiata (Don) plantations. Fungal richness, diversity, and sporocarp yields were estimated. Composite soil samples were also collected from each plot to determine explanatory edaphic variables for taxa composition. We collected 92 fungal taxa, of which 8% were ectomycorrhizal (ECM). Taxa richness, the Shannon diversity index, and ECM species richness were higher in mature stands. Interestingly, 26% of taxa were classified as edible. Sporocarp yield showed increasing trends towards matured stands. OM and C/N ratio significantly affected fungal composition and sporocarp production. The deliberate retention of mature trees in a patch form rather than clear felling of the plantations could be useful to conserve and promote fungal diversity and production, including valuable taxa such as Morchella, Suillus, and Tylopilus in older stands. This approach has important implications for forest floor microhabitats, which are important for macrofungal occurrence and production. Thus, this strategy could improve the economic outputs of these plantations in the Afromontane Region, while the mature trees could serve as a bridge for providing fungal inocula to the new plantations.

10.
Life (Basel) ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946163

ABSTRACT

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year-1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.

SELECTION OF CITATIONS
SEARCH DETAIL
...