Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 30(7): 126986, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32046903

ABSTRACT

Our HCV research program investigated novel 2'-dihalogenated nucleoside HCV polymerase inhibitors and identified compound 1, a 5'-phosphoramidate prodrug of 2'-deoxy-2'-α-bromo-ß-chloro uridine. Although 1 had a favorable in vitro activity profile in HCV replicons, oral dosing in dog resulted in low levels of the active 5'-triphosphate (TP) in liver. Metabolism studies using human hepatocytes provided a simple assay for screening alternative phosphoramidate prodrug analogs. Compounds that produced high TP concentrations in hepatocytes were tested in dog liver biopsy studies. This method identified 2-aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrug 14, which provided 100-fold higher TP concentrations in dog liver in comparison to 1 (4 and 24 h after 5 mg/kg oral dose).


Subject(s)
Antiviral Agents/pharmacology , Deoxyuridine/analogs & derivatives , Deoxyuridine/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Aminoisobutyric Acids/metabolism , Aminoisobutyric Acids/pharmacokinetics , Aminoisobutyric Acids/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Deoxyuridine/metabolism , Deoxyuridine/pharmacokinetics , Dogs , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Hepatocytes/metabolism , Humans , Liver/metabolism , Microbial Sensitivity Tests , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/pharmacokinetics , Organophosphorus Compounds/pharmacology , Prodrugs/metabolism , Prodrugs/pharmacokinetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects
2.
Bioorg Med Chem ; 28(1): 115208, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31740203

ABSTRACT

Hepatitis C virus (HCV) nucleoside inhibitors have been a key focus of nearly 2 decades of HCV drug research due to a high barrier to drug resistance and pan-genotypic activity profile provided by molecules in this drug class. Our investigations focused on several potent 2'-halogenated uridine-based HCV polymerase inhibitors, resulting in the discovery of novel 2'-deoxy-2'-dihalo-uridine analogs that are potent inhibitors in replicon assays for all genotypes. Further studies to improve in vivo performance of these nucleoside inhibitors identified aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrugs 18a and 18c, which provide high levels of the active triphosphate in dog liver. AIBEE prodrug 18c was compared with sofosbuvir (1) by co-dosing both compounds by oral administration in dog (5 mg/kg each) and measuring liver concentrations of the active triphosphate metabolite at both 4 and 24 h post dosing. In this study, 18c provided liver triphosphate concentrations that were 6-fold higher than sofosbuvir (1) at both biopsy time points, suggesting that 18c could be a highly effective agent for treating HCV infected patients in the clinic.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Uridine/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship , Uridine/analogs & derivatives , Uridine/chemistry , Virus Replication/drug effects
3.
PLoS One ; 13(10): e0205186, 2018.
Article in English | MEDLINE | ID: mdl-30286205

ABSTRACT

Hepatitis C virus (HCV) is genetically diverse and includes 7 genotypes and 67 confirmed subtypes, and the global distribution of each HCV genotype (GT) varies by geographic region. In this report, we utilized a large dataset of NS3/4A and NS5A sequences isolated from 2348 HCV GT1-6-infected patients treated with the regimen containing glecaprevir/pibrentasvir (GLE/PIB) to assess genetic diversity within HCV subtypes by geographic region using phylogenetic analyses, and evaluated the prevalence of baseline amino acid polymorphisms in NS3 and NS5A by region/country and phylogenetic cluster. Among 2348 NS3/4A and NS5A sequences, phylogenetic analysis identified 6 genotypes and 44 subtypes, including 3 GT1, 8 GT2, 3 GT3, 13 GT4, 1 GT5, and 16 GT6 subtypes. Phylogenetic analysis of HCV subtype 1a confirmed the presence of two clades, which differed by geographic region distribution and NS3 Q80K prevalence. We detected phylogenetic clustering by country in HCV subtypes 1a, 1b, 2a, 2b, and 5a, suggesting that genetically distinct virus lineages are circulating in different countries. In addition, two clades were detected in HCV GT4a and GT6e, and NS5A amino acid polymorphisms were differentially distributed between the 2 clades in each subtype. The prevalence of NS3 and NS5A baseline polymorphisms varied substantially by genotype and subtype; therefore, we also determined the activity of GLE or PIB against replicons containing NS3/4A or NS5A from HCV GT1-6 clinical samples representing 6 genotypes and 21 subtypes overall. GLE and PIB retained activity against the majority of HCV replicons containing NS3/4A or NS5A from HCV GT1-6 clinical samples, with a median EC50 of 0.29 nM for GLE and 1.1 pM for PIB in a transient replicon assay. The data presented in this report expands the available data on HCV epidemiology, subtype diversity by geographic region, and NS3 and NS5A baseline polymorphism prevalence.


Subject(s)
Genetic Variation , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Viral Nonstructural Proteins/genetics , Amino Acid Substitution/genetics , Aminoisobutyric Acids , Benzimidazoles/administration & dosage , Cyclopropanes , Drug Resistance, Viral/genetics , Genotype , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis C, Chronic/epidemiology , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Phylogeny , Proline/analogs & derivatives , Pyrrolidines , Quinoxalines/administration & dosage , Sulfonamides/administration & dosage , Viral Nonstructural Proteins/chemistry
4.
Article in English | MEDLINE | ID: mdl-30061289

ABSTRACT

Over 2,200 patients infected with hepatitis C virus (HCV) genotypes (GT) 1 to 6, with or without cirrhosis, who were treatment naive or experienced to interferon, ribavirin, and/or sofosbuvir were treated with glecaprevir/pibrentasvir for 8, 12, or 16 weeks in eight registrational phase 2 and 3 clinical studies. High rates of sustained virologic response at 12 weeks postdosing (SVR12) were achieved with a <1% virologic failure (VF) rate. The prevalence of baseline polymorphisms (BPs) in NS3 at amino acid position 155 or 168 was low (<3%) in patients infected with GT1, GT2, GT3, GT4, and GT6, while 41.9% of the GT5-infected patients had NS3-D168E; BPs were not detected at position 156 in NS3. The prevalence of NS5A-BPs was high across genotypes, driven by common polymorphisms at amino acid position 30 or 31 in GT2, 58 in GT4, and 28 in GT6. The prevalence of NS5A T/Y93 polymorphisms was 5.5% in GT1, 4.9% in GT3, and 12.5% in GT6. Consistent with the activity of glecaprevir and pibrentasvir against most amino acid polymorphisms in vitro, BPs in NS3 and/or NS5A did not have an impact on treatment outcome for patients infected with GT1 to GT6, with the exception of treatment-experienced GT3-infected patients treated for 12 weeks, for whom a 16-week regimen of glecaprevir/pibrentasvir was required to achieve SVR12 rates of ≥95%. Among the 22 patients experiencing VF, treatment-emergent substitutions were detected in NS3 in 50% of patients and in NS5A in 82% of patients, frequently as a combination of substitutions that conferred resistance to glecaprevir and/or pibrentasvir. The glecaprevir/pibrentasvir regimen, when the recommended durations are used, allows for a pan-genotypic treatment option without the need for baseline resistance testing.


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , Quinoxalines/therapeutic use , Sulfonamides/therapeutic use , Aminoisobutyric Acids , Cyclopropanes , Drug Resistance, Viral/genetics , Genotype , Hepatitis C, Chronic/drug therapy , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Polymorphism, Genetic/genetics , Proline/analogs & derivatives , Pyrrolidines , Sustained Virologic Response
5.
Viruses ; 10(9)2018 08 28.
Article in English | MEDLINE | ID: mdl-30154359

ABSTRACT

Glecaprevir (an NS3/4A protease inhibitor) and pibrentasvir (an NS5A inhibitor) are potent and pangenotypic hepatitis C virus (HCV) direct-acting antivirals. This report describes the baseline polymorphisms and treatment-emergent substitutions in NS3 or NS5A detected in samples from HCV genotype 1-infected patients receiving 3-day monotherapy of glecaprevir or pibrentasvir, respectively. None of the NS3 polymorphisms detected in the 47 baseline samples collected prior to glecaprevir monotherapy conferred reduced susceptibility to glecaprevir. The NS3 A156T substitution, which conferred resistance to glecaprevir but had low replication efficiency, emerged in one genotype 1a-infected patient among the 35 patients with available post-baseline sequence data. Baseline NS5A polymorphisms were detected in 12 of 40 patients prior to pibrentasvir monotherapy; most polymorphisms were single-position NS5A amino acid substitutions that did not confer resistance to pibrentasvir. Among the 19 patients with available post-baseline NS5A sequence data, 3 had treatment-emergent NS5A substitutions during pibrentasvir monotherapy. All treatment-emergent NS5A substitutions were linked multiple-position, almost exclusively double-position, substitutions that conferred resistance to pibrentasvir. Replicons engineered with these double-position substitutions had low replication efficiency. In conclusion, resistance-conferring substitutions emerged in a small number of genotype 1-infected patients during glecaprevir or pibrentasvir monotherapy; unlike other NS5A inhibitors, pibrentasvir did not select single-position NS5A substitutions during monotherapy.


Subject(s)
Benzimidazoles/pharmacokinetics , Drug Resistance, Multiple, Viral/genetics , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Quinoxalines/pharmacokinetics , Sulfonamides/pharmacokinetics , Amino Acid Substitution/drug effects , Aminoisobutyric Acids , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Cyclopropanes , Drug Therapy, Combination , Fibrosis , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/pathology , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Liver/pathology , Proline/analogs & derivatives , Pyrrolidines , Quinoxalines/administration & dosage , Quinoxalines/therapeutic use , RNA, Viral/genetics , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Viral Load/drug effects
6.
J Med Chem ; 61(9): 4052-4066, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29653491

ABSTRACT

Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6. In particular, these first generation NS5A inhibitors tend to select for viral drug resistance. Ombitasvir is a first generation HCV NS5A inhibitor included as a key component of Viekira Pak for the treatment of patients with HCV genotype 1 infection. Since the launch of next generation HCV treatments, functional cure for genotype 1-6 HCV infections has been achieved, as well as shortened treatment duration across a wider spectrum of genotypes. In this paper, we show how we have modified the anchor, linker, and end-cap architecture of our NS5A inhibitor design template to discover a next generation NS5A inhibitor pibrentasvir (ABT-530), which exhibits potent inhibition of the replication of wild-type genotype 1-6 HCV replicons, as well as improved activity against replicon variants demonstrating resistance against first generation NS5A inhibitors.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Hepacivirus/drug effects , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Genotype , Hepacivirus/genetics , Hepacivirus/physiology , Mice , Pyrrolidines/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution , Virus Replication/drug effects
7.
J Med Virol ; 90(1): 109-119, 2018 01.
Article in English | MEDLINE | ID: mdl-28842997

ABSTRACT

Treatment of HCV genotype (GT) 2-infected Japanese patients with paritaprevir (NS3/4A inhibitor boosted with ritonavir) and ombitasvir (NS5A inhibitor) without ribavirin for 12 weeks in the phase 2 study M12-536, and with ribavirin for 16 weeks in phase 3 study GIFT II resulted in SVR rates of 72.2% to 91.5%. Overall, 11 out of 125 patients with GT2a and 37 out of 79 patients with GT2b infection experienced virologic failure. The prevalence of baseline polymorphisms in NS3 and NS5A and their the impact on treatment outcome, as well as the development of viral resistance in GT2-infected patients experiencing virologic failure were evaluated by HCV NS3 and NS5A population and clonal sequence analyses. Baseline polymorphisms in NS3 that confer resistance to paritaprevir were rare in both GT2a- and GT2b-infected patients, while baseline polymorphisms in NS5A that confer resistance to ombitasvir were detected in 11.2% and 14.1% of the GT2a- and GT2b-infected patients, respectively. There was no significant impact of baseline polymorphisms on treatment outcome in Japanese patients. The most common treatment-emergent substitutions at the time of virologic failure occurred at amino acid positions 168 in NS3 and 28 in NS5A in both GT2a- and GT2b-infected patients. Although there was a higher rate of virologic failure in patients with GT2b infection, the resistance analyses presented in this report support the conclusion that testing for baseline resistance-associated polymorphisms is not warranted for HCV GT2-infected patients treated with a regimen of ombitasvir/paritaprevir/ritonavir + ribavirin for 16 weeks.


Subject(s)
Anilides/therapeutic use , Antiviral Agents/therapeutic use , Carbamates/therapeutic use , Drug Resistance, Viral/genetics , Hepacivirus/drug effects , Hepatitis C, Chronic/virology , Macrocyclic Compounds/therapeutic use , Ritonavir/therapeutic use , Anilides/administration & dosage , Anilides/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Carbamates/administration & dosage , Carbamates/adverse effects , Cyclopropanes , Drug Therapy, Combination/adverse effects , Female , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Hepatitis C, Chronic/ethnology , Humans , Japan/epidemiology , Lactams, Macrocyclic , Macrocyclic Compounds/administration & dosage , Macrocyclic Compounds/adverse effects , Male , Middle Aged , Polymorphism, Genetic , Proline/analogs & derivatives , Ribavirin/administration & dosage , Ribavirin/adverse effects , Ribavirin/therapeutic use , Ritonavir/administration & dosage , Ritonavir/adverse effects , Sulfonamides , Treatment Failure , Treatment Outcome , Valine
8.
Article in English | MEDLINE | ID: mdl-29180522

ABSTRACT

Glecaprevir and pibrentasvir are hepatitis C virus (HCV) pangenotypic inhibitors targeting NS3/4A protease and NS5A, respectively. This once-daily, fixed-dose combination regimen demonstrated high sustained virologic response 12 weeks postdosing (SVR12) rates in CERTAIN-1 and CERTAIN-2 studies in Japanese HCV-infected patients, with a low virologic failure rate (1.2%). There were no virologic failures among direct-acting antiviral (DAA)-treatment-naive genotype 1a (GT1a) (n = 4)-, GT1b (n = 128)-, and GT2 (n = 97)-infected noncirrhotic patients treated for 8 weeks or among GT1b (n = 38)- or GT2 (n = 20)-infected patients with compensated cirrhosis treated for 12 weeks. Two of 33 DAA-experienced and 2 of 12 GT3-infected patients treated for 12 weeks experienced virologic failure. Pooled resistance analysis, grouped by HCV subtype, treatment duration, prior treatment experience, and cirrhosis status, was conducted. Among DAA-naive GT1b-infected patients, the baseline prevalence of NS3-D168E was 1.2%, that of NS5A-L31M was 3.6%, and that of NS5A-Y93H was 17.6%. Baseline polymorphisms in NS3 or NS5A were less prevalent in GT2, with the exception of the common L/M31 polymorphism in NS5A. Among DAA-experienced GT1b-infected patients (30/32 daclatasvir plus asunaprevir-experienced patients), the baseline prevalence of NS3-D168E/T/V was 48.4%, that of NS5A-L31F/I/M/V was 81.3%, that of the NS5A P32deletion was 6.3%, and that of NS5A-Y93H was 59.4%. Common baseline polymorphisms in NS3 and/or NS5A had no impact on treatment outcomes in GT1- and GT2-infected patients; the impact on GT3-infected patients could not be assessed due to the enrollment of patients infected with diverse subtypes and the limited number of patients. The glecaprevir-pibrentasvir combination regimen allows a simplified treatment option without the need for HCV subtyping or baseline resistance testing for DAA-naive GT1- or GT2-infected patients. (The CERTAIN-1 and CERTAIN-2 studies have been registered at ClinicalTrials.gov under identifiers NCT02707952 and NCT02723084, respectively.).


Subject(s)
Antiviral Agents/therapeutic use , Benzimidazoles/therapeutic use , Drug Resistance, Viral/genetics , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Quinoxalines/therapeutic use , Sulfonamides/therapeutic use , Aminoisobutyric Acids , Cyclopropanes , Drug Therapy, Combination/methods , Female , Genotype , Hepacivirus/genetics , Humans , Isoquinolines/therapeutic use , Japan , Lactams, Macrocyclic , Leucine/analogs & derivatives , Liver Cirrhosis/virology , Male , Proline/analogs & derivatives , Pyrrolidines , Viral Nonstructural Proteins/genetics
9.
Article in English | MEDLINE | ID: mdl-29084747

ABSTRACT

Glecaprevir (formerly ABT-493) is a novel hepatitis C virus (HCV) NS3/4A protease inhibitor (PI) with pangenotypic activity. It inhibited the enzymatic activity of purified NS3/4A proteases from HCV genotypes 1 to 6 in vitro (half-maximal [50%] inhibitory concentration = 3.5 to 11.3 nM) and the replication of stable HCV subgenomic replicons containing proteases from genotypes 1 to 6 (50% effective concentration [EC50] = 0.21 to 4.6 nM). Glecaprevir had a median EC50 of 0.30 nM (range, 0.05 to 3.8 nM) for HCV replicons containing proteases from 40 samples from patients infected with HCV genotypes 1 to 5. Importantly, glecaprevir was active against the protease from genotype 3, the most-difficult-to-treat HCV genotype, in both enzymatic and replicon assays demonstrating comparable activity against the other HCV genotypes. In drug-resistant colony selection studies, glecaprevir generally selected substitutions at NS3 amino acid position A156 in replicons containing proteases from genotypes 1a, 1b, 2a, 2b, 3a, and 4a and substitutions at position D/Q168 in replicons containing proteases from genotypes 3a, 5a, and 6a. Although the substitutions A156T and A156V in NS3 of genotype 1 reduced susceptibility to glecaprevir, replicons with these substitutions demonstrated a low replication efficiency in vitro Glecaprevir is active against HCV with most of the common NS3 amino acid substitutions that are associated with reduced susceptibility to other currently approved HCV PIs, including those at positions 155 and 168. Combination of glecaprevir with HCV inhibitors with other mechanisms of action resulted in additive or synergistic antiviral activity. In summary, glecaprevir is a next-generation HCV PI with potent pangenotypic activity and a high barrier to the development of resistance.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Hepacivirus/drug effects , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Aminoisobutyric Acids , Anti-HIV Agents/pharmacology , Cyclopropanes , Drug Synergism , Genotype , HIV-1/drug effects , Hepacivirus/genetics , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Replicon/drug effects , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
10.
Article in English | MEDLINE | ID: mdl-28193664

ABSTRACT

Pibrentasvir (ABT-530) is a novel and pan-genotypic hepatitis C virus (HCV) NS5A inhibitor with 50% effective concentration (EC50) values ranging from 1.4 to 5.0 pM against HCV replicons containing NS5A from genotypes 1 to 6. Pibrentasvir demonstrated similar activity against a panel of chimeric replicons containing HCV NS5A of genotypes 1 to 6 from clinical samples. Resistance selection studies were conducted using HCV replicon cells with NS5A from genotype 1a, 1b, 2a, 2b, 3a, 4a, 5a, or 6a at a concentration of pibrentasvir that was 10- or 100-fold over its EC50 for the respective replicon. With pibrentasvir at 10-fold over the respective EC50, only a small number of colonies (0.00015 to 0.0065% of input cells) with resistance-associated amino acid substitutions were selected in replicons containing genotype 1a, 2a, or 3a NS5A, and no viable colonies were selected in replicons containing NS5A from other genotypes. With pibrentasvir at 100-fold over the respective EC50, very few colonies (0.0002% of input cells) were selected by pibrentasvir in genotype 1a replicon cells while no colonies were selected in other replicons. Pibrentasvir is active against common resistance-conferring substitutions in HCV genotypes 1 to 6 that were identified for other NS5A inhibitors, including those at key amino acid positions 28, 30, 31, or 93. The combination of pibrentasvir with HCV inhibitors of other classes produced synergistic inhibition of HCV replication. In summary, pibrentasvir is a next-generation HCV NS5A inhibitor with potent and pan-genotypic activity, and it maintains activity against common amino acid substitutions of HCV genotypes 1 to 6 that are known to confer resistance to currently approved NS5A inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/adverse effects , Benzimidazoles/pharmacology , Hepacivirus/drug effects , Pyrrolidines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Cell Line, Tumor , Drug Resistance, Viral , Hep G2 Cells , Hepacivirus/classification , Hepacivirus/genetics , Hepatitis C/drug therapy , Humans , Pyrrolidines/adverse effects , Viral Nonstructural Proteins/genetics
11.
Bioorg Med Chem Lett ; 26(22): 5462-5467, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27780635

ABSTRACT

Research toward a next-generation HCV NS5A inhibitor has identified fluorobenzimidazole analogs that demonstrate potent, broad-genotype in vitro activity against HCV genotypes 1-6 replicons as well as HCV NS5A variants that are orders of magnitude less susceptible to inhibition by first-generation NS5A inhibitors in comparison to wild-type replicons. The fluorobenzimidazole inhibitors have improved pharmacokinetic properties in comparison to non-fluorinated benzimidazole analogs. Discovery of these inhibitors was facilitated by exploring SAR in a structurally simplified inhibitor series.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Dogs , Genotype , Halogenation , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/drug therapy , Humans , Mice , Rats , Replicon/drug effects , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
12.
Antimicrob Agents Chemother ; 59(11): 6807-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26282418

ABSTRACT

Hepatitis C virus (HCV) genotype 4 (GT4) is genetically diverse, with 17 confirmed subtypes, and comprises approximately 13% of infections worldwide. In this study, we identified GT4 subtypes by phylogenetic analysis, assessed differences in patient demographics across GT4 subtypes, examined baseline sequence variability among subtypes and the potential impact on treatment outcome, and analyzed the development of viral resistance in patients who received a regimen of ombitasvir (nonstructural protein 5A [NS5A] inhibitor) plus ritonavir-boosted paritaprevir (NS3/4A inhibitor) with or without ribavirin (RBV) for the treatment of HCV GT4 infection. Phylogenetic analysis of HCV NS3/4A, NS5A, and NS5B nucleotide sequences identified 7 subtypes (4a, 4b, 4c, 4d, 4f, 4g/4k, and 4o) among 132 patient samples. Subtype prevalence varied by country, and the distributions of patient birth cohort and race were significantly different across GT4 subtypes 4a, 4d, and non-4a/4d. Baseline amino acid variability was detected in NS5A across GT4 subtypes but had no impact on treatment outcome. Three patients experienced virologic failure and were infected with subtype 4d, and the predominant resistance-associated variants at the time of failure were D168V in NS3 and L28V in NS5A. Overall, high response rates were observed among patients infected with 7 HCV GT4 subtypes, with no impact of baseline variants on treatment outcome. GT4 subtype distribution in this study differed based on patient demographics and geography.


Subject(s)
Anilides/therapeutic use , Antiviral Agents/therapeutic use , Carbamates/therapeutic use , Hepacivirus/drug effects , Hepacivirus/genetics , Macrocyclic Compounds/therapeutic use , Ritonavir/therapeutic use , Adult , Cyclopropanes , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Female , Genotype , Hepacivirus/classification , Hepacivirus/pathogenicity , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Lactams, Macrocyclic , Male , Middle Aged , Phylogeny , Proline/analogs & derivatives , Sulfonamides , Treatment Outcome , Valine , Young Adult
13.
Antimicrob Agents Chemother ; 59(2): 988-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451053

ABSTRACT

The development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively. In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10 was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.).


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Hepacivirus/drug effects , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cyclopropanes , Hepatitis C/drug therapy , Humans , Lactams, Macrocyclic , Proline/analogs & derivatives , Sulfonamides
14.
J Med Chem ; 54(20): 7094-104, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21899332

ABSTRACT

Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.


Subject(s)
Drug Resistance, Viral , HIV Protease Inhibitors/chemical synthesis , HIV-1/drug effects , Animals , Biological Availability , Crystallography, X-Ray , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , HIV-1/isolation & purification , Hydrogen Bonding , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Mutation , Rats , Stereoisomerism , Structure-Activity Relationship
15.
J Med Chem ; 52(8): 2571-86, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19323562

ABSTRACT

A series of symmetry-based HIV protease inhibitors was designed and synthesized. Modification of the core regiochemistry and stereochemistry significantly affected the potency, metabolic stability, and oral bioavailability of the inhibitors, as did the variation of a pendent arylmethyl P3 group. Optimization led to the selection of two compounds, 10c (A-790742) and 9d (A-792611), for advancement to preclinical studies. Both compounds displayed low nanomolar potency against wild type HIV in the presence of human serum, low rates of metabolism in human liver microsomes, and high oral bioavailability in animal models. The compounds were examined in a preclinical model for the hyperbilirubinemia observed with some HIV PIs, and both exhibited less bilirubin elevation than comparator compounds. X-ray crystallographic analyses of the new cores were used to examine differences in their binding modes. The antiviral activity of the compounds against protease inhibitor resistant strains of HIV was also determined.


Subject(s)
Carbamates/chemical synthesis , Dipeptides/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , Putrescine/analogs & derivatives , Pyridines/chemical synthesis , Animals , Binding Sites , Biological Availability , Caco-2 Cells , Carbamates/metabolism , Carbamates/pharmacology , Cell Membrane Permeability , Crystallography, X-Ray , Dipeptides/adverse effects , Dipeptides/pharmacology , Dogs , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease Inhibitors/adverse effects , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , HIV-1/genetics , Humans , Hyperbilirubinemia/chemically induced , Hyperlipidemias/chemically induced , Hyperlipidemias/metabolism , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Molecular , Mutation , Putrescine/chemical synthesis , Putrescine/metabolism , Putrescine/pharmacology , Pyridines/adverse effects , Pyridines/pharmacology , Rats , Rats, Gunn , Stereoisomerism , Structure-Activity Relationship
16.
Antimicrob Agents Chemother ; 52(4): 1337-44, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18212102

ABSTRACT

A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.


Subject(s)
HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Drug Resistance, Viral/genetics , HIV Protease/drug effects , HIV Protease/genetics , HIV Protease Inhibitors/chemistry , HIV-1/genetics , Humans , Lopinavir , Microbial Sensitivity Tests , Mutation , Phenotype , Pyrimidinones/pharmacology , Selection, Genetic , Serial Passage
17.
J Virol Methods ; 145(2): 137-45, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17604129

ABSTRACT

Hepatitis C virus (HCV) replicon-based shuttle vectors that permit phenotypes of NS5B polymerase genes from a large number of patient isolates to be rapidly assessed when transiently expressed in cultured cells were designed. When used to test responses to an inhibitor of HCV RNA-dependent RNA polymerase, IC(50) values for inhibition covered a several hundred-fold range among 47 patient samples tested. This observation highlights the variability that can be found by testing isolates derived from HCV-infected subjects. Partial suppression with a polymerase inhibitor of the most sensitive species permitted detection of minor quasispecies that were 7-200-fold more resistant than the bulk population in approximately half of the samples. Sequence analysis showed a wide range of amino acid changes not detected by conventional selection methods using laboratory-derived strains. This approach provides a means to assess variation in antiviral efficacy, and to predict possible responses in a clinical setting.


Subject(s)
Genetic Vectors , Hepacivirus/genetics , Hepatitis C/virology , RNA-Dependent RNA Polymerase/genetics , Replicon , Viral Nonstructural Proteins/genetics , Antiviral Agents/pharmacology , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Viral , Genotype , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/isolation & purification , Humans , Phenotype , Plasmids , RNA, Viral/isolation & purification , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/isolation & purification , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/isolation & purification
18.
Antimicrob Agents Chemother ; 51(9): 3075-80, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17576848

ABSTRACT

Lopinavir (LPV)-ritonavir has demonstrated durable antiviral activity in human immunodeficiency virus type 1 (HIV-1)-infected antiretroviral-naïve and protease inhibitor (PI)-experienced patients. However, information on LPV activity against HIV-2 and the patterns of mutations in HIV-2 in response to selection by LPV is limited. The activity of LPV against three strains of HIV-2 was assessed and compared to activity against a reference HIV-1 strain. LPV demonstrated activity similar to that observed against HIV-1 in two HIV-2 strains (HIV-2(MS) and HIV-2(CBL-23)) tested. On the other hand, approximately 10-fold-reduced susceptibility was observed with the third HIV-2 strain, HIV-2(CDC310319). Passage of HIV-2(MS) with increasing concentrations of LPV selected mutations V47A and D17N in the HIV-2 protease gene. The introduction of both 17N and 47A either individually or together into HIV-2(ROD) molecular infectious clones showed that the single V47A substitution in HIV-2 resulted in a substantial reduction in susceptibility to LPV. In contrast, this mutant retained wild-type susceptibility to other PIs and appeared to be hypersusceptible to atazanavir and saquinavir.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Protease Inhibitors/pharmacology , HIV-2/drug effects , Pyrimidinones/pharmacology , Amino Acid Sequence , Cell Line , Cytopathogenic Effect, Viral , Drug Resistance, Viral , HIV Core Protein p24/genetics , HIV-2/enzymology , HIV-2/genetics , Humans , Lopinavir , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenotype , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Virus Replication/drug effects
19.
Antiviral Res ; 76(1): 93-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17561278

ABSTRACT

Compound A-837093, a non-nucleoside HCV RNA-dependent RNA polymerase inhibitor, displayed nanomolar potencies against HCV genotypes 1a and 1b replicons. It also exhibited an excellent metabolic profile and achieved high plasma and liver concentrations in animals. In order to characterize the development of resistance to this anti-HCV agent, HCV subgenomic 1b strain N replicon cells were cultured in the presence of A-837093 with G418. Mutations S368A, Y448H, G554D, Y555C, and D559G in the NS5B polymerase gene were identified that led to substantial decreases in the susceptibilities of 1b genotype replicons to the inhibitor A-837093. However, the resistant mutants remained susceptible to HCV protease inhibitor BILN-2061 and alpha interferon as well as to a different class of non-nucleoside HCV polymerase inhibitor. In addition, each single resistant mutation identified significantly reduced the replication capacity of mutant compared to wild-type replicon. These findings provide a strategic guide for the future development of non-nucleoside inhibitors of HCV NS5B polymerase.


Subject(s)
Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Cell Line , Drug Resistance, Viral/genetics , Genes, Viral/drug effects , Hepacivirus/physiology , Humans , Models, Molecular , Mutation , RNA-Dependent RNA Polymerase/biosynthesis , RNA-Dependent RNA Polymerase/chemistry , Replicon/genetics , Viral Proteins/biosynthesis , Viral Proteins/chemistry , Virus Replication
20.
Antiviral Res ; 73(1): 78-83, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16945431

ABSTRACT

The combinations of Abbott Hepatitis C virus (HCV) polymerase A-782759 with either Boehringer Ingelheim HCV NS3 protease inhibitor BILN-2061 or interferon (IFN) displayed additive to synergistic relationships over a range of concentrations of two-drug combination. Treatment of HCV replicon with A-782759, IFN or BILN-2061 for about 16 days resulted in dramatic reductions in HCV RNA (5.1, 3.0 and 3.9 log10 RNA copies, respectively). However, none of the compounds tested alone lead to replicon RNA reduction to undetectable levels. Ongoing replication in the presence of A-782759 or BILN-2061 was associated with the appearance of resistant mutations M414T in NS5B and D168V in NS3, respectively. In contrast, a combination of A-782759 with BILN-2061 resulted in greater than 7 logs RNA reduction leading to undetectable replicon RNA after 16 days of treatment. Our findings suggest that a monotherapy with either drug alone is likely to result in development of resistant mutants. However, a combination therapy with polymerase inhibitor has the potential to improve the efficacy of IFN or a protease inhibitor alone in vivo, due to the lower likelihood of resistance development.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Interferon-alpha/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Carbamates/pharmacology , Cell Line , Drug Synergism , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Macrocyclic Compounds/pharmacology , Microbial Sensitivity Tests/methods , Quinolines/pharmacology , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...