Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Dev Biol ; 166(2): 465-76, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7813770

ABSTRACT

Hox genes are thought to participate in patterning the anteroposterior (a-p) axis during vertebrate embryogenesis. In this investigation, the spatial expression of six Hoxb genes was analyzed in early embryos of Xenopus laevis by in situ hybridization. Hoxb gene expression was first detected in late gastrulae/early neurulae, by which stage, the characteristic spatially colinear Hoxb gene expression sequence was already apparent. Dissection experiments indicated that the establishment of these localized expression patterns coincides with the acquisition of anteroposterior positional information along the main body axis. The Hoxb genes continued to be expressed in similar domains along the anteroposterior axis at all developmental stages examined, although there were some changes in expression at the cellular level. Interestingly, the 3' genes, Hoxb-1, Hoxb-3, and Hoxb-4 were expressed in very restricted domains in the future hindbrain, while Hoxb-5, Hoxb-7, and Hoxb-9 transcripts were present along the entire presumptive spinal cord. It was thus notable that the 5' Hoxb genes exhibited different types of expression domain than the 3' Hoxb genes. These observations suggest that there may be different mechanisms regulating the expression of the 3' and 5' Hoxb genes. Expression of all of the Hoxb genes analyzed, except Hoxb-4, was predominantly detectable in the central nervous system or in neural crest-derived structures. Hoxb-4 mRNA was detected in the central nervous system, but interestingly, the major expression site for this gene was the somites. The other Hoxb genes tested failed to show significant expression in the somitic mesoderm, although transcripts from genes 5' from Hoxb-4 were detected in other mesodermal tissues. In the vertebrate trunk, anteroposterior patterning of the CNS is thought to be regulated by the somites. The results obtained here for Xenopus embryos did not explicitly support the idea of a Hoxb code for the somites, although we cannot rule this out. Instead, interestingly, the data were consistent with a role for Hoxb genes in dorsoventral patterning of the mesoderm.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Homeobox , Homeodomain Proteins/physiology , Mesoderm/cytology , Rhombencephalon/embryology , Xenopus laevis/embryology , Animals , Gastrula , Morphogenesis , RNA, Messenger/genetics , Xenopus laevis/genetics
2.
Development ; 120(4): 973-85, 1994 Apr.
Article in English | MEDLINE | ID: mdl-7600972

ABSTRACT

We have isolated the first Xenopus laevis cDNA coding for a cellular retinoic acid binding protein (xCRABP). xCRABP contains a single open reading frame, coding for an approximately 15 x 10(3) M(r) protein. Northern blot analysis shows that this cDNA hybridizes to a mRNA that is expressed both maternally and zygotically and which already reaches maximal expression during gastrulation (much earlier than previously described CRABP genes from other species). In situ hybridisation showed that at the onset of gastrulation, xCRABP mRNA is localised at the dorsal side of the embryo, in the ectoderm and in invaginating mesoderm. xCRABP expression then rapidly resolves into two domains; a neural domain, which becomes localised in the anterior hindbrain, and a posterior domain in neuroectoderm and mesoderm. These two domains were already evident by the mid-gastrula stage. We investigated the function of xCRABP by injecting fertilized eggs with an excess of sense xCRABP mRNA and examined the effects on development. We observed embryos with clear antero-posterior defects, many of which resembled the effects of treating Xenopus gastrulae with all-trans retinoic acid. Notably, the heart was deleted, anterior brain structures and the tail were reduced, and segmentation of the hindbrain was inhibited. The effects of injecting xCRABP transcripts are compatible with the idea that xCRABP overexpression modulates the action of an endogenous retinoid, thereby regulating the expression of retinoid target genes, such as Hox genes. In support of this, we showed that the expression of two Xenopus Hoxb genes, Hoxb-9 and Hoxb-4, is strongly enhanced by xCRABP over-expression. These results suggest that xCRABP expression may help to specify the anteroposterior axis during the early development of Xenopus laevis.


Subject(s)
Receptors, Retinoic Acid/metabolism , Xenopus laevis/embryology , Amino Acid Sequence , Animals , Base Sequence , Blotting, Northern , Cloning, Molecular , Gene Expression , In Situ Hybridization , Microinjections , Molecular Sequence Data , Morphogenesis/genetics , Phenotype
3.
Nature ; 366(6453): 340-4, 1993 Nov 25.
Article in English | MEDLINE | ID: mdl-8247127

ABSTRACT

Retinoids (vitamin A and its metabolites) are suspected of regulating diverse aspects of growth, differentiation, and patterning during embryogenesis, but many questions remain about the identities and functions of the endogenous active retinoids involved. The pleiotropic effects of retinoids may be explained by the existence of complex signal transduction pathways involving diverse nuclear receptors of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families, and at least two types of cellular retinoic acid binding proteins (CRABP-I and -II). The different RARs, RXRs, and CRABPs have different expression patterns during vertebrate embryogenesis, suggesting that they each have particular functions. Another level at which fine tuning of retinoid action could occur is the metabolism of vitamin A to active metabolites, which may include all-trans-retinoic acid, all-trans-3,4-didehydroretinoic acid, 9-cis-retinoic acid, and 14-hydroxy-4,14-retroretinol. Formation of the metabolite all-trans-4-oxo-retinoic acid from retinoic acid was considered to be an inactivation pathway during growth and differentiation. We report here that, in contrast, 4-oxo-retinoic acid is a highly active metabolite which can modulate positional specification in early embryos. We also show that this retinoid binds avidly to and activates RAR beta, and that it is available in early embryos. The different activities of 4-oxo-retinoic acid and retinoic acid in modulating positional specification on the one hand, and growth and differentiation on the other, interest us in the possibility that specific retinoid ligands regulate different physiological processes in vivo.


Subject(s)
Transcription Factors , Tretinoin/analogs & derivatives , Xenopus laevis/embryology , Animals , Chromatography, High Pressure Liquid , Embryo, Nonmammalian/chemistry , Embryo, Nonmammalian/drug effects , Embryonic Development , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors , Tretinoin/analysis , Tretinoin/metabolism , Tretinoin/pharmacology , Tretinoin/toxicity , Xenopus laevis/metabolism
4.
Mech Dev ; 40(1-2): 3-12, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8095151

ABSTRACT

Here we describe experiments detailing the developmental expression, and the inducibility by all-trans retinoic acid (RA) of six members of the Xenopus Hox-2 complex of homeobox-containing genes. We first report the cloning and characterisation of two novel Xenopus Hox-2 genes (Xhox2.7 and Xhox2.9), and provide evidence that the six genes studied are indeed closely linked in the same chromosomal complex. We next show that all six genes are expressed in a spatial sequence which is colinear with their putative 3' to 5' chromosomal sequence and that five of them are also expressed in a 3' to 5' colinear temporal sequence. The sixth gene (Xhox2.9) has an exceptional spatial and temporal expression pattern. The six genes all respond to RA by showing altered spatiotemporal expression patterns, and are also hyperinduced by RA, with a sequence of magnitudes which is colinear with their 3' to 5' chromosomal sequence and with their spatial and temporal expression sequences. Our data also suggest a pre-existing anteroposterior polarity in the embryo's competence to respond to RA. These results complement and extend previous findings made using murine and avian embryos and mammalian cell lines. They suggest a mechanism whereby an endogenous retinoid could help to provide positional information in the early embryo.


Subject(s)
Genes, Homeobox/drug effects , Tretinoin/pharmacology , Xenopus laevis/genetics , Amino Acid Sequence , Animals , Gene Expression Regulation/drug effects , Molecular Sequence Data , Sequence Homology, Amino Acid , Xenopus laevis/embryology
5.
Dev Suppl ; : 195-202, 1992.
Article in English | MEDLINE | ID: mdl-1363722

ABSTRACT

In this paper, we review experiments to characterise the developmental expression and the responses to all-trans retinoic acid (RA) of six members of the Hox-2 complex of homeobox-containing genes, during the early development of Xenopus laevis. We showed that the six genes are expressed in a spatial sequence which is colinear with their putative 3' to 5' chromosomal sequence and that five of them are also expressed rapidly after the beginning of gastrulation, in a 3' to 5' colinear temporal sequence. The sixth gene (Xhox2.9) has an exceptional spatial and temporal expression pattern. The six genes all respond to RA by showing altered spatiotemporal expression patterns, and are also RA-inducible, the sequence of the magnitudes of their RA responses being colinear with their 3' to 5' chromosomal sequence, and with their spatial and temporal expression sequences. Our data also reveal that there is a pre-existing anteroposterior polarity in the embryo's competence for a response to RA. These results complement and extend previous findings made using murine and avian embryos and mammalian cell lines. They suggest that an endogenous retinoid could contribute to positional information in the early Xenopus embryo.


Subject(s)
Gastrula/physiology , Gene Expression/physiology , Genes, Homeobox/genetics , Tretinoin/pharmacology , Animals , Gene Expression/drug effects , In Situ Hybridization , Morphogenesis/drug effects , Xenopus laevis
6.
Hum Genet ; 87(2): 201-4, 1991 Jun.
Article in English | MEDLINE | ID: mdl-1648546

ABSTRACT

A human genomic fragment comprising the cellular retinoic acid binding protein (CRABP) gene was isolated. By using a panel of somatic cell hybrids, this gene could be assigned to human chromosome 15. Subsequently, a possible involvement of the CRABP gene in translocation (15;17) (q22;q11) positive acute promyelocytic leukemia (APL) was investigated. Although transposition of the CRABP gene could be demonstrated, we did not observe any gross CRABP rearrangement in a series of primary APL patients, nor in the acute myeloblastic leukemia cell line HL-60. Thus, the observed lack of CRABP expression in these leukemic cells may not be caused by disruption of its gene. CRABP maps to the region 15q22-qter.


Subject(s)
Carrier Proteins/genetics , Chromosomes, Human, Pair 15 , Leukemia, Promyelocytic, Acute/genetics , Neoplasm Proteins/genetics , Blotting, Northern , Blotting, Southern , Chromosomes, Human, Pair 17 , Cloning, Molecular , Humans , Hybrid Cells , Receptors, Retinoic Acid , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL