Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 176(3): 466-477, 2019 02.
Article in English | MEDLINE | ID: mdl-30447161

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. EXPERIMENTAL APPROACH: The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. KEY RESULTS: Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis-Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5'-hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. CONCLUSIONS AND IMPLICATIONS: The combined results show that the 5'-hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5'-hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin-induced liver injury. Additionally, the strong inhibition in CYP3A-catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug-drug interactions could occur with coadministered drugs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Floxacillin/metabolism , Sulfaphenazole/pharmacology , Biocatalysis/drug effects , Floxacillin/chemistry , Humans , Hydroxylation/drug effects , Kinetics , Molecular Structure , Sulfaphenazole/chemistry
2.
Amino Acids ; 50(10): 1377-1390, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29978260

ABSTRACT

In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.


Subject(s)
Acetaminophen/toxicity , Enzyme Inhibitors/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Tryptophan/metabolism , Amino Acid Transport Systems/antagonists & inhibitors , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Hep G2 Cells , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism
3.
J Pharm Biomed Anal ; 156: 181-188, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29709785

ABSTRACT

Human glutathione transferase T2-2 (GSTT2-2) is one of the enzymes considered to play a role in inactivation of toxicants and carcinogens. The expression level of this enzyme is determined by genetic and environmental factors, which may lead to differences in susceptibility. As a specific assay for GSTT2-2 so far a spectroscopical assay based on GSH-conjugation of menaphthyl sulfate (MSu) was used. This spectrophotometric assay, however, appeared too insensitive to accurately quantify the GSTT2-2 activities in a panel of 20 human liver samples. More recently, expression levels of GSTT2-2 in biological samples are quantified by measuring mRNA levels. Since mRNA-levels do not always correlate well with enzyme activity, a specific and sensitive assay is required. In the present study a highly sensitive high-performance liquid chromatography (HPLC)-based method was developed. By applying the new method, firstly, the specificity of GSTT2-2 among 15 recombinant human GST isoforms in catalyzing GSH-conjugation of MSu was confirmed. In addition, a 65-fold inter-individual variation of GSTT2-2 activity was found from the individual liver fractions. By applying the method to individual liver fractions, a 65-fold inter-individual variation of GSTT2-2 activity was found. As a second application, the role of GSTT2-2 in GSH-conjugation of the environmental carcinogen 1-methylpyrene sulfate (MPS) was studied by correlation analysis with GSTT2-2-catalyzed MSu conjugation. The relatively poor correlation suggested that other GSTs also contribute to MPS-conjugation, as confirmed by incubations with recombinant GSTs.


Subject(s)
Enzyme Assays/methods , Glutathione Transferase/analysis , Liver/enzymology , Biological Variation, Population , Carcinogens, Environmental/metabolism , Chromatography, High Pressure Liquid/methods , Glutathione/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Pyrenes/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
4.
J Inorg Biochem ; 184: 115-122, 2018 07.
Article in English | MEDLINE | ID: mdl-29723739

ABSTRACT

The 5'-hydroxymethyl metabolite of the penicillin based antibiotic flucloxacillin (FLX) is considered to be involved in bile duct damage occurring in a small number of patients. Because 5'-hydroxymethyl FLX is difficult to obtain by organic synthesis, biosynthesis using highly active and regioselective biocatalysts would be an alternative approach. By screening an in-house library of Cytochrome P450 (CYP) BM3 mutants, mutant M11 L437E was identified as a regioselective enzyme with relatively high activity in production of 5'-hydroxymethyl FLX as was confirmed by mass spectrometry and NMR. In contrast, incubation of M11 L437E and other mutants with oxacillin (OX, which differs from FLX by a lack of aromatic halogens) resulted in formation of two metabolites. In addition to 5'-hydroxymethyl OX we identified a product resulting from aromatic hydroxylation. In silico studies of both FLX and OX with three CYP BM3 mutants revealed substrate binding poses allowing for 5'-methyl hydroxylation, as well as binding poses with the aromatic moiety in the vicinity of the heme iron for which the corresponding product of aromatic hydroxylation was not observed for FLX. Supported by the (differences in) experimentally determined ratios of product formation for OX hydroxylation by M11 and its L437A variant and M11 L437E, Molecular Dynamics simulations suggest that the preference of mutant M11 L437E to bind FLX in its catalytically active pose over the other binding orientation contributes to its biocatalytic activity, highlighting the benefit of studying effects of active-site mutations on possible alternative enzyme-substrate binding poses in protein engineering.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Floxacillin/chemistry , Floxacillin/metabolism , Catalytic Domain , Hydroxylation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Dynamics Simulation , Substrate Specificity
5.
Curr Drug Metab ; 19(4): 370-381, 2018.
Article in English | MEDLINE | ID: mdl-29318967

ABSTRACT

BACKGROUND: Inter-individual variability in hepatic drug metabolizing enzyme (DME) activity is a major contributor to heterogeneity in drug clearance and safety. Accurate data on expression levels and activities of DMEs is an important prerequisite for in vitro-in vivo extrapolation and in silico based predictions. Characterization and assessment of inter-correlations of the major DMEs cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) have been extensively documented, but simultaneous quantification including other major DMEs has been lacking. OBJECTIVE: Assessment of inter-donor variability and inter-correlations of CYPs, UGTs, sulfotransferases (SULTs), glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH: quinone oxidoreductase 2 (NQO2) in a set of 20 individual liver homogenates. METHOD: The main drug metabolizing isoforms of CYP and UGT have been reaction phenotype in individual liver microsomes and NQO1, NQO2, GSTT1 and GSTT2 in corresponding cytosol. In addition, we assessed overall SULT activity in liver cytosol using acetaminophen and 7-hydroxycoumarin as non-selective substrates and cytosolic GST activity using the non-selective substrate 1-chloro-2,4-dinitrobenzene (CDNB). Expression of GST isoforms was also assessed. RESULTS AND CONCLUSION: While hepatic NQO1 activity was highly variable, NQO2 activity was more conserved. In addition, we found that of the hepatic GST isoforms, the variation in GSTM3 levels, which is poorly studied, was highest. The majority of significant correlations were found amongst CYP and UGT enzyme activities. The dataset presented provides the absolute quantification of the largest number of hepatic DME activities so far and constitute an essential resource for in silico toxicokinetic and metabolic modelling studies.


Subject(s)
Acetaminophen/metabolism , Cytochrome P-450 Enzyme System/metabolism , Glycosyltransferases/metabolism , Liver/enzymology , Umbelliferones/metabolism , Adult , Aged , Aged, 80 and over , Cytochrome P-450 Enzyme System/genetics , Cytosol/enzymology , Cytosol/metabolism , Female , Gene Expression Regulation, Enzymologic , Genetic Variation , Glycosyltransferases/genetics , Humans , Liver/metabolism , Male , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Middle Aged , Protein Isoforms
6.
Toxicol Lett ; 284: 70-78, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29203276

ABSTRACT

The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cytochrome P-450 CYP2C8/genetics , Diclofenac/metabolism , Glucuronosyltransferase/genetics , Polymorphism, Genetic , Animals , Chemical and Drug Induced Liver Injury/metabolism , Escherichia coli/genetics , Glucuronides/metabolism , Hydroxylation , Kinetics , Mutation , Oxidation-Reduction , Recombinant Proteins , Sf9 Cells
7.
Chem Res Toxicol ; 31(2): 116-126, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29281794

ABSTRACT

Detoxicating enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction of quinone-like compounds. The protective role of the polymorphic NQO1 and NQO2 enzymes is especially of interest in the liver as the major site of drug bioactivation to chemically reactive drug metabolites. In the current study, we quantified the concentrations of NQO1 and NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213 nM. Using recombinant NQO1, we showed that low nM concentrations of NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine quinone-like metabolites in vitro. Hepatic NQO2 concentrations ranged from 2 to 31 µM. NQO2 catalyzed the reduction of quinone-like metabolites derived from acetaminophen, clozapine, 4'-hydroxydiclofenac, mefenamic acid, amodiaquine, and carbamazepine. The reduction of the clozapine nitrenium ion supports association studies showing that NQO2 is a genetic risk factor for clozapine-induced agranulocytosis. The 5-hydroxydiclofenac quinone imine, which was previously shown to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified as a potent NQO2 inhibitor and was applied to further confirm the catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites remains to be established by identification of the physiologically relevant co-substrates, our results suggest an additional protective role of the NQO2 protein by non-enzymatic scavenging of quinone-like metabolites. Hepatic NQO1 activity in detoxication of quinone-like metabolites becomes especially important when other detoxication pathways are exhausted and NQO1 levels are induced.


Subject(s)
Imines/pharmacology , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Quinone Reductases/antagonists & inhibitors , Quinones/pharmacology , Biocatalysis , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Imines/chemical synthesis , Imines/chemistry , Liver/drug effects , Liver/enzymology , Liver/metabolism , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidation-Reduction , Quinone Reductases/metabolism , Quinones/chemical synthesis , Quinones/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship
8.
Chem Res Toxicol ; 29(12): 2136-2144, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27989146

ABSTRACT

Nevirapine (NVP) is a non-nucleoside reverse transcriptase-inhibitor, which is associated with severe idiosyncratic skin rash and hepatotoxicity. These adverse drug reactions are believed to be mediated by the formation of epoxides and/or quinone methide formed by oxidative metabolism by P450s and 12-sulfoxyl-NVP formed by sequential 12-hydroxylation and O-sulfonation. Although different GSH-conjugates and corresponding mercapturic acids have been demonstrated previously in vitro and in vivo, the role of the glutathione S-transferases in the inactivation of the different reactive metabolites has not been studied so far. In the present study the activity of 10 recombinant human glutathione S-transferases (GSTs) in the detoxification of the different reactive metabolites of NVP was studied. The results show that GSTP1-1 is a highly active catalyst of GSH-conjugation of the oxidative metabolites of NVP, even at high GSH-concentration. Experiments with trideuterated NVP suggest involvement of a reactive epoxide rather than quinone methide in the formation of the GSH-conjugate formed after oxidative bioactivation. GSH-conjugation of 12-sulfoxyl-NVP forming NVP-12-GSH was only catalyzed by GSTM1-1, GSTA1-1, and GSTA3-3. Although the exact expression levels of these enzymes in the skin is unknown, the relatively low activity of this catalysis makes it unlikely that GSTs can provide significant protection against this metabolite. However, since NVP-12-GSH is specifically formed via the 12-sulfoxyl-NVP, its corresponding urinary mercapturic acid can be considered as a biomarker for recent internal exposure to this protein-reactive sulfate. However, it has to be taken into account that 12-sulfoxyl-NVP is not completely trapped by GSH and that rates of bioinactivation will differ between patients due to variability in expression of GSTM1, GSTA1, and GSTA3.


Subject(s)
Glutathione Transferase/metabolism , Isoenzymes/metabolism , Nevirapine/metabolism , Reverse Transcriptase Inhibitors/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , Cytochrome P-450 CYP3A/metabolism , Glutathione Transferase/genetics , Humans , Inactivation, Metabolic , Isoenzymes/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization
9.
Purinergic Signal ; 9(1): 91-100, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23054444

ABSTRACT

The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this 'biased' form of signaling. We screened over 800 compounds targeting the class of adenosine A(1) receptors using a ß-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [(3)H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of ß-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A(1) receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.


Subject(s)
Receptor, Adenosine A1/drug effects , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Arrestin/physiology , CHO Cells , Cell Line , Cell Membrane/drug effects , Cricetinae , Cricetulus , Data Interpretation, Statistical , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Ligands , Radioligand Assay , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects
10.
Retrovirology ; 7: 60, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20646276

ABSTRACT

BACKGROUND: Two HIV-1 positive patients, L and P, participating in the Amsterdam Cohort studies acquired an HIV-1 superinfection within half a year from their primary HIV-1 infection (Jurriaans et al., JAIDS 2008, 47:69-73). The aim of this study was to compare the replicative fitness of the primary and superinfecting HIV-1 strains of both patients. The use of isolate-specific primer sets indicated that the primary and secondary strains co-exist in plasma at all time points after the moment of superinfection. RESULTS: Biological HIV-1 clones were derived from peripheral blood CD4 + T cells at different time point, and identified as the primary or secondary virus through sequence analysis. Replication competition assays were performed with selected virus pairs in PHA/IL-2 activated peripheral blood mononuclear cells (PBMC's) and analyzed with the Heteroduplex Tracking Assay (HTA) and isolate-specific PCR amplification. In both cases, we found a replicative advantage of the secondary HIV-1 strain over the primary virus. Full-length HIV-1 genomes were sequenced to find possible explanations for the difference in replication capacity. Mutations that could negatively affect viral replication were identified in the primary infecting strains. In patient L, the primary strain has two insertions in the LTR promoter, combined with a mutation in the tat gene that has been associated with decreased replication capacity. The primary HIV-1 strain isolated from patient P has two mutations in the LTR that have been associated with a reduced replication rate. In a luciferase assay, only the LTR from the primary virus of patient P had lower transcriptional activity compared with the superinfecting virus. CONCLUSIONS: These preliminary findings suggest the interesting scenario that superinfection occurs preferentially in patients infected with a relatively attenuated HIV-1 isolate.


Subject(s)
HIV Infections/virology , HIV-1/isolation & purification , HIV-1/pathogenicity , Superinfection/virology , Virus Replication , Cells, Cultured , DNA Mutational Analysis , HIV-1/genetics , HIV-1/growth & development , Humans , Leukocytes, Mononuclear/virology , Male , Mutagenesis, Insertional , Mutation, Missense , Plasma/virology , Sequence Analysis, DNA , Viral Load , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...