Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Total Environ ; 916: 169895, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38215854

ABSTRACT

Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.


Subject(s)
Carbon , Carbonates , Animals , Humans , Carbon/metabolism , Carbonates/chemistry , Seawater/chemistry , Carbon Isotopes/metabolism , Carbon Dioxide/metabolism , Fishes/metabolism , Carbon Cycle , Membrane Transport Proteins/metabolism , Oceans and Seas
2.
Environ Microbiol ; 26(1): e16548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072822

ABSTRACT

Paramuricea clavata is an ecosystem architect of the Mediterranean temperate reefs that is currently threatened by episodic mass mortality events related to global warming. The microbiome may play an active role in the thermal stress susceptibility of corals, potentially holding the answer as to why corals show differential sensitivity to heat stress. To investigate this, the prokaryotic and eukaryotic microbiome of P. clavata collected from around the Mediterranean was characterised before experimental heat stress to determine if its microbial composition influences the thermal response of the holobiont. We found that members of P. clavata's microeukaryotic community were significantly correlated with thermal stress sensitivity. Syndiniales from the Dino-Group I Clade 1 were significantly enriched in thermally resistant corals, while the apicomplexan corallicolids were significantly enriched in thermally susceptible corals. We hypothesise that P. clavata mortality following heat stress may be caused by a shift from apparent commensalism to parasitism in the corallicolid-coral host relationship driven by the added stress. Our results show the potential importance of corallicolids and the rest of the microeukaryotic community of corals to understanding thermal stress response in corals and provide a useful tool to guide conservation efforts and future research into coral-associated microeukaryotes.


Subject(s)
Anthozoa , Microbiota , Animals , Anthozoa/physiology , Coral Reefs , Microbiota/physiology , Heat-Shock Response , Global Warming , Symbiosis/physiology
3.
Small Methods ; 8(1): e2300603, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772633

ABSTRACT

The Dean Flow, a physics phenomenon that accounts for the impact of channel curvature on fluid dynamics, has great potential to be used in microfluidic synthesis of nanoparticles. This study explores the impact of the Dean Flow on the synthesis of ZIF-8 particles. Several variables that influence the Dean Equation (the mathematical expression of Dean Flow) are tested to validate the applicability of this expression in microfluidic synthesis, including the flow rate, radius of curvature, channel cross sectional area, and reagent concentration. It is demonstrated that the current standard of reporting, providing only the flow rate and crucially not the radius of curvature, is an incomplete description that will invariably lead to irreproducible syntheses across different laboratories. An alternative standard of reporting is presented and it is demonstrated how the sleek and simple math of the Dean Equation can be used to precisely tune the final dimensions of high quality, monodisperse ZIF-8 nanoparticles between 40 and 700 nm.

4.
Trends Microbiol ; 32(2): 128-131, 2024 02.
Article in English | MEDLINE | ID: mdl-38102035

ABSTRACT

Protists are key players in the biosphere. Here, we provide a perspective on integrating protist culturing with omics approaches, imaging, and high-throughput single-cell manipulation strategies, concluding with actions required for a successful return of the golden age of protist culturing.


Subject(s)
Eukaryota , Eukaryota/genetics , Multiomics
5.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Article in English | MEDLINE | ID: mdl-37282792

ABSTRACT

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Subject(s)
Isoptera , Parabasalidea , Animals , Phylogeny , South America
6.
PeerJ ; 11: e15023, 2023.
Article in English | MEDLINE | ID: mdl-37151292

ABSTRACT

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Subject(s)
Coral Reefs , Dinoflagellida , Genetic Variation , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Consensus , Anthozoa , Symbiosis
7.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894742

ABSTRACT

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

8.
Heliyon ; 9(1): e12637, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691544

ABSTRACT

The aim of this work is the design and 3D printing of a new electrochemical sensor for the detection of Listeria monocytogenes based on loop mediated isothermal amplification (LAMP). The food related diseases involve a serious health issue all over the world. Listeria monocytogenes is one of the major problems of contaminated food, this pathogen causes a disease called listeriosis with a high rate of hospitalization and mortality. Having a fast, sensitive and specific detection method for food quality control is a must in the food industry to avoid the presence of this pathogen in the food chain (raw materials, facilities and products). A point-of-care biosensor based in LAMP and electrochemical detection is one of the best options to detect the bacteria on site and in a very short period of time. With the numerical analysis of different geometries and flow rates during sample injection in order to avoid bubbles, an optimized design of the microfluidic biosensor chamber was selected for 3D-printing and experimental analysis. For the electrochemical detection, a novel custom gold concentric-3-electrode consisting in a working electrode, reference electrode and a counter electrode was designed and placed in the bottom of the chamber. The LAMP reaction was optimized specifically for a primers set with a limit of detection of 1.25 pg of genomic DNA per reaction and 100% specific for detecting all 12 Listeria monocytogenes serotypes and no other Listeria species or food-related bacteria. The methylene blue redox-active molecule was tested as the electrochemical transducer and shown to be compatible with the LAMP reaction and very clearly distinguished negative from positive food samples when the reaction is measured at the end-point inside the biosensor.

9.
Mol Ecol Resour ; 22(2): 664-678, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34549891

ABSTRACT

Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published "antimetazoan" reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one-step and two-step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F - UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly-targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one-step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host-associated microeukaryote reads than the two-step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host-associated eukaryotes.


Subject(s)
DNA, Environmental , Eukaryota , Animals , Ecosystem , Eukaryota/genetics , Eukaryotic Cells , RNA, Ribosomal, 18S/genetics
10.
An. Fac. Med. (Perú) ; 82(4)oct. 2021.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1505644

ABSTRACT

Introducción. La adecuada dotación y distribución con equidad de recursos humanos son fundamentales para el desempeño del sistema de salud, especialmente en el primer nivel de atención. El Programa Servicio Rural y Urbano Marginal (SERUMS) es la principal estrategia desarrollada por el Estado peruano para este fin. Objetivo. Describir el efecto de la dotación de médicos, enfermeros y obstetras del Programa SERUMS en la equidad de la distribución de recursos humanos en el primer nivel de atención. Métodos. Estudio observacional, descriptivo y transversal, de carácter censal con base en el Registro Nacional de Personal de Salud - INFORHUS, agosto 2019. Se aplicó indicadores de dotación, se verificó si existe diferencia entre la distribución porcentual de profesionales SERUMS y no SERUMS, se calculó la densidad (profesionales/10 000 hab. a nivel departamental, quintil de pobreza y ruralidad) y coeficientes de Gini (departamental). Resultados. La población estuvo constituida por 6037 profesionales SERUMS y 27 495 no SERUMS. El Programa SERUMS incrementó de manera importante la dotación y densidad de profesionales en casi todas las regiones del país. En 5 regiones los profesionales SERUMS representaron más del 50% de la dotación. Incrementos importantes se encontraron en el análisis por quintil de pobreza y en el ámbito rural, especialmente en la dotación de médicos. El programa SERUMS evidenció una mayor desigualdad en su distribución, según los coeficientes de Gini, a favor de las poblaciones más vulnerables. Conclusiones. El Programa SERUMS incrementa de manera importante la dotación y densidad de profesionales, especialmente en los distritos más pobres del Perú.


Introduction. The adequate allocation and equitable distribution of human resources are essential for the health system›s performance, especially at the first level of care. The Rural and Urban Marginal Service Program (SERUMS) is the primary strategy developed by the Peruvian State for this purpose. Objective. To describe the effect of the number of doctors, nurses, and midwives of the SERUMS Program on the equity of the distribution of human resources at the primary care level. Methods. Observational, descriptive, and cross-sectional study of a census nature based on the National Registry of Health Personnel - INFORHUS, August 2019. Staffing indicators were applied, it was verified if there is a difference between the percentage distribution of SERUMS and non-SERUMS professionals, density (professionals per 10 000 inhabitants at the departmental level, poverty quintile, and rurality), and Gini coefficients (departmental) were calculated. Results. The population consisted of 6037 SERUMS professionals and 27 495 non-SERUMS professionals. The SERUMS Program significantly increased the number and density of professionals in almost all departments. In 5 regions, SERUMS professionals represented more than 50% of the workforce. Significant increases in the number of doctors were found in the poverty quintile and rural areas analysis. According to the Gini coefficients, the SERUMS program showed greater inequality in its distribution in favor of the most vulnerable populations. Conclusions. The SERUMS Program significantly increases the number and density of healthcare professionals, especially in the poorest districts of Peru.

11.
Sci Rep ; 11(1): 7270, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790354

ABSTRACT

Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.


Subject(s)
Isoptera , Parabasalidea , Symbiosis , Animals , Parabasalidea/classification , Parabasalidea/physiology
12.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33574059

ABSTRACT

Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.


Subject(s)
Adaptation, Physiological , Brain/growth & development , Cebus/genetics , Genome , Longevity/genetics , Animals , Evolution, Molecular , Flow Cytometry/methods , Forests , Genomics/methods
13.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Article in English | MEDLINE | ID: mdl-33417693

ABSTRACT

Sampling of different body regions can reveal highly specialized bacterial associations within the holobiont and facilitate identification of core microbial symbionts that would otherwise be overlooked by bulk sampling methods. Here, we characterized compartment-specific associations present within the model cnidarian Nematostella vectensis by dividing its morphology into three distinct microhabitats. This sampling design allowed us to uncover a capitulum-specific dominance of spirochetes within N. vectensis. Bacteria from the family Spirochaetaceae made up 66% of the community in the capitulum, while only representing 1.2% and 0.1% of the communities in the mesenteries and physa, respectively. A phylogenetic analysis of the predominant spirochete sequence recovered from N. vectensis showed a close relation to spirochetes previously recovered from wild N. vectensis. These sequences clustered closer to the recently described genus Oceanispirochaeta, rather than Spirochaeta perfilievii, supporting them as members of this clade. This suggests a prevalent and yet uncharacterized association between N. vectensis and spirochetes from the order Spirochaetales.


Subject(s)
Bacteria/classification , Host Microbial Interactions/physiology , Sea Anemones/microbiology , Spirochaetales/genetics , Animals , Bacteria/genetics , Biodiversity , Microbiota/genetics , Phylogeny
14.
J Eukaryot Microbiol ; 68(1): e12825, 2021 01.
Article in English | MEDLINE | ID: mdl-32875679

ABSTRACT

The stramenopiles are a large and diverse group of eukaryotes that possess various lifestyles required to thrive in a broad array of environments. The stramenopiles branch with the alveolates, rhizarians, and telonemids, forming the supergroup TSAR. Here, we present a new genus and species of aquatic nanoflagellated stramenopile: Mediocremonas mediterraneus, a free-swimming heterotrophic predator. M. mediterraneus cell bodies measure between 2.0-4.0 µm in length and 1.2-3.7 µm in width, possessing two flagella and an oval body morphology. The growth and grazing rate of M. mediterraneus in batch cultures ranges from 0.68 to 1.83 d-1 and 1.99 to 5.38 bacteria/h, respectively. M. mediterraneus was found to be 93.9% phylogenetically similar with Developayella elegans and 94.7% with Develorapax marinus, two members within the class Developea. The phylogenetic position of the Developea and the ability of M. mediterraneus to remain in culture make it a good candidate for further genomic studies that could help us to better understand phagotrophy in marine systems as well as the transition from heterotrophy to phototrophy within the stramenopiles.


Subject(s)
Stramenopiles/classification , Stramenopiles/cytology , Microscopy, Electron, Scanning , Phylogeny , RNA, Algal/analysis , RNA, Ribosomal, 16S/analysis , Stramenopiles/genetics , Stramenopiles/ultrastructure
16.
Eur J Protistol ; 76: 125719, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32736314

ABSTRACT

Studies of animal and plant microbiomes are burgeoning, but the majority of these focus on bacteria and rarely include microeukaryotes other than fungi. However, there is growing evidence that microeukaryotes living on and in larger organisms (e.g. plants, animals, macroalgae) are diverse and in many cases abundant. We present here a new combination of 'anti-metazoan' primers: 574*f-UNonMet_DB that amplify a wide diversity of microeukaryotes including some groups that are difficult to amplify using other primer combinations. While many groups of microeukaryotic parasites are recognised, myriad other microeukaryotes are associated with hosts as previously unknown parasites (often genetically divergent so difficult to amplify using standard PCR primers), opportunistic parasites, commensals, and other ecto- and endo-symbionts, across the 'symbiotic continuum'. These fulfil a wide range of roles from pathogenesis to mutually beneficial symbioses, but mostly their roles are unknown and likely fall somewhere along this spectrum, with the potential to switch the nature of their interactions with the host under different conditions. The composition and dynamics of host-associated microbial communities are also increasingly recognised as important moderators of host health. This 'pathobiome' approach to understanding disease is beginning to supercede a one-pathogen-one-disease paradigm, which cannot sufficiently explain many disease scenarios.


Subject(s)
Eukaryota/classification , Host-Parasite Interactions/physiology , Microbiota , Plants/parasitology , Symbiosis , Animals , DNA Primers/genetics , DNA, Protozoan/genetics , Disease , Microbiota/genetics
17.
Front Microbiol ; 10: 2373, 2019.
Article in English | MEDLINE | ID: mdl-31708883

ABSTRACT

Apicomplexans are a group of microbial eukaryotes that contain some of the most well-studied parasites, including the causing agents of toxoplasmosis and malaria, and emergent diseases like cryptosporidiosis or babesiosis. Decades of research have illuminated the pathogenic mechanisms, molecular biology, and genomics of model apicomplexans, but we know little about their diversity and distribution in natural environments. In this study we analyze the distribution of apicomplexans across a range of both host-associated and free-living environments. Using publicly available small subunit (SSU) rRNA gene databases, high-throughput environmental sequencing (HTES) surveys, and our own generated HTES data, we developed an apicomplexan reference database, which includes the largest apicomplexan SSU rRNA tree available to date and encompasses comprehensive sampling of this group and their closest relatives. This tree allowed us to identify and correct incongruences in the molecular identification of apicomplexan sequences. Analyzing the diversity and distribution of apicomplexans in HTES studies with this curated reference database also showed a widespread, and quantitatively important, presence of apicomplexans across a variety of free-living environments. These data allow us to describe a remarkable molecular diversity of this group compared with our current knowledge, especially when compared with that identified from described apicomplexan species. This is most striking in marine environments, where potentially the most diverse apicomplexans apparently exist, but have not yet been formally recognized. The new database will be useful for microbial ecology and epidemiological studies, and provide valuable reference for medical and veterinary diagnosis especially in cases of emerging, zoonotic, and cryptic infections.

18.
Curr Biol ; 29(23): 4093-4101.e4, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31735677

ABSTRACT

The Fungi are a diverse kingdom, dominating terrestrial environments and driving important ecologies. Although fungi, and the related Opisthosporidia, interact with photosynthetic organisms on land and in freshwater as parasites, symbionts, and/or saprotrophic degraders [1, 2], such interactions in the marine environment are poorly understood [3-8]. One newly identified uncultured marine lineage has been named novel chytrid-like-clade-1 (NCLC1) [4] or basal-clone-group-I [5, 6]. We use ribosomal RNA (rRNA) encoding gene phylogenies to demonstrate that NCLC1 is a distinct branch within the Opisthosporidia (Holomycota) [7]. Opisthosporidia are a diverse and largely uncultured group that form a sister branch to the Fungi or, alternatively, the deepest branch within the Fungi, depending on how the boundary to this kingdom is inferred [9]. Using culture-free lineage-specific rRNA-targeted fluorescent in situ hybridization (FISH) microscopy, we demonstrate that NCLC1 cells form intracellular infection of key diatom species, establishing that intracellular colonization of a eukaryotic host is a consistent lifestyle across the Opisthosporidia [8-11]. NCLC1 infection-associated loss and/or envelopment of the diatom nuclei infers a necrotrophic-pathogenic interaction. Diatoms are one of the most diverse and ecologically important phytoplankton groups, acting as dominant primary producers and driving carbon fixation and storage in many aquatic environments [12-14]. Our results provide insight into the diversity of microbial eukaryotes that interact with diatoms. We suggest that such interactions can play a key role in diatom associated ecosystem functions, such as the marine carbon pump through necrotrophic-parasitism, facilitating the export of diatoms to the sediment [15, 16].


Subject(s)
Diatoms/parasitology , Fungi/physiology , Host-Parasite Interactions , Fungi/classification , In Situ Hybridization, Fluorescence , Phylogeny , Phytoplankton/parasitology
19.
Environ Microbiol ; 21(10): 3855-3861, 2019 10.
Article in English | MEDLINE | ID: mdl-31278828

ABSTRACT

The application of metabarcoding to study animal-associated microeukaryotes has been restricted because the universal barcode used to study microeukaryotic ecology and distribution in the environment, the Small Subunit of the Ribosomal RNA gene (18S rRNA), is also present in the host. As a result, when host-associated microbial eukaryotes are analysed by metabarcoding, the reads tend to be dominated by host sequences. We have done an in silico validation against the SILVA 18S rRNA database of a non-metazoan primer set (primers that are biased against the metazoan 18S rRNA) that recovers only 2.6% of all the metazoan sequences, while recovering most of the other eukaryotes (80.4%). Among metazoans, the non-metazoan primers are predicted to amplify 74% of Porifera sequences, 4% of Ctenophora, and 15% of Cnidaria, while amplifying almost no sequences within Bilateria. In vivo, these non-metazoan primers reduce significantly the animal signal from coral and human samples, and when compared against universal primers provide at worst a 2-fold decrease in the number of metazoan reads and at best a 2800-fold decrease. This easy, inexpensive, and near-universal method for the study of animal-associated microeukaryotes diversity will contribute to a better understanding of the microbiome.


Subject(s)
Cnidaria/genetics , Ctenophora/genetics , DNA Barcoding, Taxonomic/methods , DNA Primers/genetics , Porifera/genetics , Animals , Databases, Nucleic Acid , Genes, rRNA/genetics , Humans , Phylogeny , RNA, Ribosomal, 18S/genetics
20.
Nature ; 568(7750): 103-107, 2019 04.
Article in English | MEDLINE | ID: mdl-30944491

ABSTRACT

Apicomplexa is a group of obligate intracellular parasites that includes the causative agents of human diseases such as malaria and toxoplasmosis. Apicomplexans evolved from free-living phototrophic ancestors, but how this transition to parasitism occurred remains unknown. One potential clue lies in coral reefs, of which environmental DNA surveys have uncovered several lineages of uncharacterized basally branching apicomplexans1,2. Reef-building corals have a well-studied symbiotic relationship with photosynthetic Symbiodiniaceae dinoflagellates (for example, Symbiodinium3), but the identification of other key microbial symbionts of corals has proven to be challenging4,5. Here we use community surveys, genomics and microscopy analyses to identify an apicomplexan lineage-which we informally name 'corallicolids'-that was found at a high prevalence (over 80% of samples, 70% of genera) across all major groups of corals. Corallicolids were the second most abundant coral-associated microeukaryotes after the Symbiodiniaceae, and are therefore core members of the coral microbiome. In situ fluorescence and electron microscopy confirmed that corallicolids live intracellularly within the tissues of the coral gastric cavity, and that they possess apicomplexan ultrastructural features. We sequenced the genome of the corallicolid plastid, which lacked all genes for photosystem proteins; this indicates that corallicolids probably contain a non-photosynthetic plastid (an apicoplast6). However, the corallicolid plastid differs from all other known apicoplasts because it retains the four ancestral genes that are involved in chlorophyll biosynthesis. Corallicolids thus share characteristics with both their parasitic and their free-living relatives, which suggests that they are evolutionary intermediates and implies the existence of a unique biochemistry during the transition from phototrophy to parasitism.


Subject(s)
Anthozoa/parasitology , Apicomplexa/genetics , Apicomplexa/metabolism , Chlorophyll/biosynthesis , Genes, Protozoan/genetics , Phylogeny , Animals , Apicomplexa/cytology , Coral Reefs , Dinoflagellida/cytology , Dinoflagellida/genetics , Dinoflagellida/metabolism , Genome, Protozoan/genetics , Photosynthesis , Plastids/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...