Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067233

ABSTRACT

BACKGROUND: To date, no standardized protocols nor a quantitative assessment of the near-infrared fluorescence angiography with indocyanine green (NIR-ICG) are available. The aim of this study was to evaluate the timing of fluorescence as a reproducible parameter and its efficacy in predicting anastomotic leakage (AL) in colorectal surgery. METHODS: A consecutive cohort of 108 patients undergoing minimally invasive elective procedures for colorectal cancer was prospectively enrolled. The difference between macro and microperfusion (ΔT) was obtained by calculating the timing of fluorescence at the level of iliac artery division and colonic wall, respectively. RESULTS: Subjects with a ΔT ≥ 15.5± 0.5 s had a higher tendency to develop an AL (p < 0.01). The ΔT/heart rate interaction was found to predict AL with an odds ratio of 1.02 (p < 0.01); a cut-off threshold of 832 was identified (sensitivity 0.86, specificity 0.77). Perfusion parameters were also associated with a faster bowel motility resumption and a reduced length of hospital stay. CONCLUSIONS: The analysis of the timing of fluorescence provides a quantitative, easy evaluation of tissue perfusion. A ΔT/HR interaction ≥832 may be used as a real-time parameter to guide surgical decision making in colorectal surgery.

2.
Nanoscale Adv ; 5(17): 4311-4336, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37638162

ABSTRACT

The tumor microenvironment (TME) demonstrates distinct hallmarks, including acidosis, hypoxia, reactive oxygen species (ROS) generation, and altered ion fluxes, which are crucial targets for early cancer biomarker detection, tumor diagnosis, and therapeutic strategies. Various imaging and sensing techniques have been developed and employed in both research and clinical settings to visualize and monitor cellular and TME dynamics. Among these, ratiometric fluorescence-based sensors have emerged as powerful analytical tools, providing precise and sensitive insights into TME and enabling real-time detection and tracking of dynamic changes. In this comprehensive review, we discuss the latest advancements in ratiometric fluorescent probes designed for the optical mapping of pH, oxygen, ROS, ions, and biomarkers within the TME. We elucidate their structural designs and sensing mechanisms as well as their applications in in vitro and in vivo detection. Furthermore, we explore integrated sensing platforms that reveal the spatiotemporal behavior of complex tumor cultures, highlighting the potential of high-resolution imaging techniques combined with computational methods. This review aims to provide a solid foundation for understanding the current state of the art and the future potential of fluorescent nano- and microparticles in the field of cellular microenvironment sensing.

3.
Mater Today Bio ; 20: 100655, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37234366

ABSTRACT

The constant increase in cancer incidence and mortality pushes biomedical research towards the development of in vitro 3D systems able to faithfully reproduce and effectively probe the tumor microenvironment. Cancer cells interact with this complex and dynamic architecture, leading to peculiar tumor-associated phenomena, such as acidic pH conditions, rigid extracellular matrix, altered vasculature, hypoxic condition. Acidification of extracellular pH, in particular, is a well-known feature of solid tumors, correlated to cancer initiation, progression, and resistance to therapies. Monitoring local pH variations, non-invasively, during cancer growth and in response to drug treatment becomes extremely important for understanding cancer mechanisms. Here, we describe a simple and reliable pH-sensing hybrid system, based on a thermoresponsive hydrogel embedding optical pH sensors, that we specifically apply for non-invasive and accurate metabolism monitoring in colorectal cancer (CRC) spheroids. First, the physico-chemical properties of the hybrid sensing platform, in terms of stability, rheological and mechanical properties, morphology and pH sensitivity, were fully characterized. Then, the proton gradient distribution in the spheroids proximity, in the presence or absence of drug treatment, was quantified over time by time lapse confocal light scanning microscopy and automated segmentation pipeline, highlighting the effects of the drug treatment in the extracellular pH. In particular, in the treated CRC spheroids the acidification of the microenvironment resulted faster and more pronounced over time. Moreover, a pH gradient distribution was detected in the untreated spheroids, with more acidic values in proximity of the spheroids, resembling the cell metabolic features observed in vivo in the tumor microenvironment. These findings promise to shed light on mechanisms of regulation of proton exchanges by cellular metabolism being essential for the study of solid tumors in 3D in vitro models and the development of personalized medicine approaches.

4.
Proc Natl Acad Sci U S A ; 120(11): e2122352120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897966

ABSTRACT

A crucial challenge in medicine is choosing which drug (or combination) will be the most advantageous for a particular patient. Usually, drug response rates differ substantially, and the reasons for this response unpredictability remain ambiguous. Consequently, it is central to classify features that contribute to the observed drug response variability. Pancreatic cancer is one of the deadliest cancers with limited therapeutic achievements due to the massive presence of stroma that generates an environment that enables tumor growth, metastasis, and drug resistance. To understand the cancer-stroma cross talk within the tumor microenvironment and to develop personalized adjuvant therapies, there is a necessity for effective approaches that offer measurable data to monitor the effect of drugs at the single-cell level. Here, we develop a computational approach, based on cell imaging, that quantifies the cellular cross talk between pancreatic tumor cells (L3.6pl or AsPC1) and pancreatic stellate cells (PSCs), coordinating their kinetics in presence of the chemotherapeutic agent gemcitabine. We report significant heterogeneity in the organization of cellular interactions in response to the drug. For L3.6pl cells, gemcitabine sensibly decreases stroma-stroma interactions but increases stroma-cancer interactions, overall enhancing motility and crowding. In the AsPC1 case, gemcitabine promotes the interactions among tumor cells, but it does not affect stroma-cancer interplay, possibly suggesting a milder effect of the drug on cell dynamics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Gemcitabine , Cell Communication , Cell Line, Tumor , Tumor Microenvironment
5.
Macromol Biosci ; 23(5): e2200524, 2023 05.
Article in English | MEDLINE | ID: mdl-36852933

ABSTRACT

Zein, a corn-derived protein, has a variety of applications ranging from drug delivery to tissue engineering and wound healing. This work aims to develop a biocompatible scaffold for dermal applications based on thermally annealed electrospun propolis-loaded zein nanofibers. Pristine fibers' biocompatibility is determined in vitro. Next, propolis from Melipona quadrifasciata is added to the fibers at different concentrations (5% to 25%), and the scaffolds are studied. The physicochemical properties of zein/propolis precursor dispersions are evaluated and the results are correlated to the fibers' properties. Due to zein's and propolis' very favorable interactions, which are responsible for the increase in the dispersions surface tension, nanometric size ribbon-like fibers ranging from 420 to 575 nm are obtained. The fiber's hydrophobicity is not dependent on propolis concentration and increases with the annealing procedure. Propolis inhibitory concentration (IC50 ) is determined as 61.78 µg mL-1 . When loaded into fibers, propolis is gradually delivered to cells as Balb/3T3 fibroblasts and are able to adhere, grow, and interact with pristine and propolis-loaded fibers, and cytotoxicity is not observed. Therefore, the zein-propolis nanofibers are considered biocompatible and safe. The results are promising and provide prospects for the development of wound-healing nanofiber patches-one of propolis' main applications.


Subject(s)
Nanofibers , Propolis , Zein , Animals , Propolis/chemistry , Zein/chemistry , Nanofibers/chemistry , Tissue Engineering/methods , Drug Delivery Systems
6.
ACS Nano ; 17(4): 3313-3323, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36573897

ABSTRACT

The homeostatic control of their environment is an essential task of living cells. It has been hypothesized that, when microenvironmental pH inhomogeneities are induced by high cellular metabolic activity, diffusing protons act as signaling molecules, driving the establishment of exchange networks sustained by the cell-to-cell shuttling of overflow products such as lactate. Despite their fundamental role, the extent and dynamics of such networks is largely unknown due to the lack of methods in single-cell flux analysis. In this study, we provide direct experimental characterization of such exchange networks. We devise a method to quantify single-cell fermentation fluxes over time by integrating high-resolution pH microenvironment sensing via ratiometric nanofibers with constraint-based inverse modeling. We apply our method to cell cultures with mixed populations of cancer cells and fibroblasts. We find that the proton trafficking underlying bulk acidification is strongly heterogeneous, with maximal single-cell fluxes exceeding typical values by up to 3 orders of magnitude. In addition, a crossover in time from a networked phase sustained by densely connected "hubs" (corresponding to cells with high activity) to a sparse phase dominated by isolated dipolar motifs (i.e., by pairwise cell-to-cell exchanges) is uncovered, which parallels the time course of bulk acidification. Our method addresses issues ranging from the homeostatic function of proton exchange to the metabolic coupling of cells with different energetic demands, allowing for real-time noninvasive single-cell metabolic flux analysis.


Subject(s)
Nanofibers , Protons , Fermentation , Lactic Acid , Hydrogen-Ion Concentration
7.
Biosens Bioelectron ; 212: 114401, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35617754

ABSTRACT

The detection of extracellular pH at single cell resolution is challenging and requires advanced sensibility. Sensing pH at high spatial and temporal resolution might provide crucial information in understanding the role of pH and its fluctuations in a wide range of physio-pathological cellular processes, including cancer. Here, a method to embed silica-based fluorescent pH sensors into alginate-based three-dimensional (3D) microgels tumour models, coupled with a computational method for fine data analysis, is presented. By means of confocal laser scanning microscopy, live-cell time-lapse imaging of 3D alginate microgels was performed and the extracellular pH metabolic variations were monitored in both in vitro 3D mono- and 3D co-cultures of tumour and stromal pancreatic cells. The results show that the extracellular pH is cell line-specific and time-dependent. Moreover, differences in pH were also detected between 3D monocultures versus 3D co-cultures, thus suggesting the existence of a metabolic crosstalk between tumour and stromal cells. In conclusion, the system has the potential to image multiple live cell types in a 3D environment and to decipher in real-time their pH metabolic interplay under controlled experimental conditions, thus being also a suitable platform for drug screening and personalized medicine.


Subject(s)
Biosensing Techniques , Microgels , Neoplasms , Alginates , Humans , Hydrogen-Ion Concentration , Neoplasms/diagnostic imaging
8.
ACS Appl Mater Interfaces ; 14(16): 18133-18149, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35404562

ABSTRACT

pH balance and regulation within organelles are fundamental to cell homeostasis and proliferation. The ability to track pH in cells becomes significantly important to understand these processes in detail. Fluorescent sensors based on micro- and nanoparticles have been applied to measure intracellular pH; however, an accurate methodology to precisely monitor acidification kinetics of organelles in living cells has not been established, limiting the scope of this class of sensors. Here, silica-based fluorescent microparticles were utilized to probe the pH of intracellular organelles in MDA-MB-231 and MCF-7 breast cancer cells. In addition to the robust, ratiometric, trackable, and bioinert pH sensors, we developed a novel dimensionality reduction algorithm to automatically track and screen massive internalization events of pH sensors. We found that the mean acidification time is comparable among the two cell lines (ΔTMCF-7 = 16.3 min; ΔTMDA-MB-231 = 19.5 min); however, MCF-7 cells showed a much broader heterogeneity in comparison to MDA-MB-231 cells. The use of pH sensors and ratiometric imaging of living cells in combination with a novel computational approach allow analysis of thousands of events in a computationally inexpensive and faster way than the standard routes. The reported methodology can potentially be used to monitor pH as well as several other parameters associated with endocytosis.


Subject(s)
Fluorescent Dyes , Organelles , Homeostasis , Humans , Hydrogen-Ion Concentration , MCF-7 Cells
9.
J Colloid Interface Sci ; 607(Pt 1): 34-44, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34492351

ABSTRACT

Among the strategies to fight cancer, multi-therapeutic approaches are considered as a wise choice to put in place multiple weapons to suppress tumors. In this work, to combine chemotherapeutic effects to magnetic hyperthermia when using biocompatible scaffolds, we have established an electrospinning method to produce nanofibers of polycaprolactone loaded with magnetic nanoparticles as heat mediators to be selectively activated under alternating magnetic field and doxorubicin as a chemotherapeutic drug. Production of the fibers was investigated with iron oxide nanoparticles of peculiar cubic shape (at 15 and 23 nm in cube edges) as they provide benchmark heat performance under clinical magnetic hyperthermia conditions. With 23 nm nanocubes when included into the fibers, an arrangement in chains was obtained. This linear configuration of magnetic nanoparticles resemble that of the magnetosomes, produced by magnetotactic bacteria, and our magnetic fibers exhibited remarkable heating effects as the magnetosomes. Magnetic fiber scaffolds showed excellent biocompatibility on fibroblast cells when missing the chemotherapeutic agent and when not exposed to magnetic hyperthermia as shown by viability assays. On the contrary, the fibers containing both magnetic nanocubes and doxorubicin showed significant cytotoxic effects on cervical cancer cells following the exposure to magnetic hyperthermia. Notably, these tests were conducted at magnetic hyperthermia field conditions of clinical use. As here shown, on the doxorubicin sensitive cervical cancer cells, the combination of heat damage by magnetic hyperthermia with enhanced diffusion of doxorubicin at therapeutic temperature are responsible for a more effective oncotherapy.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Ferric Compounds , Magnetic Fields , Polyesters
10.
Chemistry ; 27(53): 13279, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34363251

ABSTRACT

Invited for the cover of this issue are Anil Chandra, Loretta L. del Mercato and co-workers at the Institute of Nanotechnology of National Research Council and the University of Salento. The image depicts how negatively charged pH-sensitive pyranine (HPTS) molecules were successfully immobilized on silica microparticles (SMPs) without compromising the molecules' pH sensitivity. These resulting sensors can be used to measure pH in vitro and in vivo due to the cytocompatibility of HPTS molecules and SMPs. Read the full text of the article at 10.1002/chem.202101568.


Subject(s)
Arylsulfonates , Silicon Dioxide , Fluorescent Dyes , Humans , Hydrogen-Ion Concentration
11.
Chemistry ; 27(53): 13318-13324, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34231936

ABSTRACT

Pyranine (HPTS) is a remarkably interesting pH-sensitive dye that has been used for plenty of applications. Its high quantum yield and extremely sensitive ratiometric fluorescence against pH change makes it a very favorable for pH-sensing applications and the development of pH nano-/microsensors. However, its strong negative charge and lack of easily modifiable functional groups makes it difficult to use with charged substrates such as silica. This study reports a methodology for noncovalent HPTS immobilization on silica microparticles that considers the retention of pH sensitivity as well as the long-term stability of the pH microsensors. The study emphasizes the importance of surface charge for governing the sensitivity of the immobilized HPTS dye molecules on silica microparticles. The importance of the immobilization methodology, which preserves the sensitivity and stability of the microsensors, is also assessed.


Subject(s)
Fluorescent Dyes , Silicon Dioxide , Arylsulfonates , Hydrogen-Ion Concentration , Spectrometry, Fluorescence
12.
Cancers (Basel) ; 13(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672435

ABSTRACT

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.

13.
Nanotechnology ; 32(6): 062001, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33065554

ABSTRACT

The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.


Subject(s)
Fluorescent Dyes/chemistry , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Optical Imaging/methods , Tumor Microenvironment , Acidosis , Animals , Humans , Hydrogen-Ion Concentration , Metalloporphyrins/chemistry , Nanostructures/chemistry , Neoplasms/blood supply , Neoplasms/metabolism , Neoplasms/pathology , Tumor Hypoxia , Tumor Microenvironment/physiology
14.
Biomater Sci ; 8(18): 4887-4905, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32830832

ABSTRACT

Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.


Subject(s)
Nanofibers , Neoplasms , Extracellular Matrix , Neoplasms/drug therapy , Tissue Engineering , Tissue Scaffolds
15.
Small ; 16(34): e2002258, 2020 08.
Article in English | MEDLINE | ID: mdl-32656904

ABSTRACT

Despite numerous advances in the field of tissue engineering and regenerative medicine, monitoring the formation of tissue regeneration and its metabolic variations during culture is still a challenge and mostly limited to bulk volumetric assays. Here, a simple method of adding capsules-based optical sensors in cell-seeded 3D scaffolds is presented and the potential of these sensors to monitor the pH changes in space and time during cell growth is demonstrated. It is shown that the pH decreased over time in the 3D scaffolds, with a more prominent decrease at the edges of the scaffolds. Moreover, the pH change is higher in 3D scaffolds compared to monolayered 2D cell cultures. The results suggest that this system, composed by capsules-based optical sensors and 3D scaffolds with predefined geometry and pore architecture network, can be a suitable platform for monitoring pH variations during 3D cell growth and tissue formation. This is particularly relevant for the investigation of 3D cellular microenvironment alterations occurring both during physiological processes, such as tissue regeneration, and pathological processes, such as cancer evolution.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , Hydrogen-Ion Concentration , Tissue Engineering , Tissue Scaffolds
16.
Sci Rep ; 10(1): 10192, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576846

ABSTRACT

Tumour spheroids have the potential to be used as preclinical chemo-sensitivity assays. However, the production of three-dimensional (3D) tumour spheroids remains challenging as not all tumour cell lines form spheroids with regular morphologies and spheroid transfer often induces disaggregation. In the field of pancreatic cancer, the MiaPaCa-2 cell line is an interesting model for research but it is known for its difficulty to form stable spheroids; also, when formed, spheroids from this cell line are weak and arduous to manage and to harvest for further analyses such as multiple staining and imaging. In this work, we compared different methods (i.e. hanging drop, round-bottom wells and Matrigel embedding, each of them with or without methylcellulose in the media) to evaluate which one allowed to better overpass these limitations. Morphometric analysis indicated that hanging drop in presence of methylcellulose leaded to well-organized spheroids; interestingly, quantitative PCR (qPCR) analysis reflected the morphometric characterization, indicating that same spheroids expressed the highest values of CD44, VIMENTIN, TGF-ß1 and Ki-67. In addition, we investigated the generation of MiaPaCa-2 spheroids when cultured on substrates of different hydrophobicity, in order to minimize the area in contact with the culture media and to further improve spheroid formation.


Subject(s)
Cell Culture Techniques/methods , Pancreatic Neoplasms/pathology , Spheroids, Cellular/pathology , Cell Line, Tumor , Collagen/metabolism , Culture Media/metabolism , Drug Combinations , Humans , Hydrophobic and Hydrophilic Interactions , Laminin/metabolism , Methylcellulose/chemistry , Proteoglycans/metabolism
17.
Drug Discov Today ; 24(2): 517-525, 2019 02.
Article in English | MEDLINE | ID: mdl-30312743

ABSTRACT

Organ-on-a-chip (OoCs) platforms could revolutionize drug discovery and might ultimately become essential tools for precision therapy. Although many single-organ and interconnected systems have been described, the immune system has been comparatively neglected, despite its pervasive role in the body and the trend towards newer therapeutic products (i.e., complex biologics, nanoparticles, immune checkpoint inhibitors, and engineered T cells) that often cause, or are based on, immune reactions. In this review, we recapitulate some distinctive features of the immune system before reviewing microfluidic devices that mimic lymphoid organs or other organs and/or tissues with an integrated immune system component.


Subject(s)
Immune System , Lab-On-A-Chip Devices , Animals , Humans
18.
Curr Med Chem ; 25(35): 4616-4637, 2018.
Article in English | MEDLINE | ID: mdl-29874987

ABSTRACT

In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe the biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management.


Subject(s)
Microfluidics , Models, Biological , Neoplasms/pathology , Precision Medicine , Animals , Exosomes/metabolism , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplastic Cells, Circulating/chemistry , Neoplastic Cells, Circulating/metabolism , SELEX Aptamer Technique , Tumor Microenvironment
19.
Anal Chem ; 90(12): 7659-7665, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29766712

ABSTRACT

Functional, flexible, and integrated lab-on-chips, based on elastic membranes, are capable of fine response to external stimuli, so to pave the way for many applications as multiplexed sensors for a wide range of chemical, physical and biomedical processes. Here, we report on the use of elastic thin membranes (TMs), integrated with a reaction chamber, to fabricate a membrane-based pressure sensor (MePS) for reaction monitoring. In particular, the TM becomes the key-element in the design of a highly sensitive MePS capable to monitor gaseous species production in dynamic and temporally fast processes with high resolution and reproducibility. Indeed, we demonstrate the use of a functional MePS integrating a 2 µm thick polydimethylsiloxane TM by monitoring the dioxygen evolution resulting from catalytic hydrogen peroxide dismutation. The operation of the membrane, explained using a diffusion-dominated model, is demonstrated on two similar catalytic systems with catalase-like activity, assembled into polyelectrolyte multilayers capsules. The MePS, tested in a range between 2 and 50 Pa, allows detecting a dioxygen variation of the µmol L-1 s-1 order. Due to their structural features, flexibility of integration, and biocompatibility, the MePSs are amenable of future development within advanced lab-on-chips.

20.
ACS Appl Mater Interfaces ; 9(40): 35095-35104, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28858466

ABSTRACT

In this work, the versatility of layer-by-layer technology was combined with the magnetic response of iron oxide nanobeads to prepare magnetic mesostructures with a degradable multilayer shell into which a dye quenched ovalbumin conjugate (DQ-OVA) was loaded. The system was specifically designed to prove the protease sensitivity of the hybrid mesoscale system and the easy detection of the ovalbumin released. The uptake of the nanostructures in the breast cancer cells was followed by the effective release of DQ-OVA upon activation via the intracellular proteases degradation of the polymer shells. Monitoring the fluorescence rising due to DQ-OVA digestion and the cellular dye distribution, together with the electron microscopy studying, enabled us to track the shell degradation and the endosomal uptake pathway that resulted in the release of the digested fragments of DQ ovalbumin in the cytosol.


Subject(s)
Magnetics , Nanoparticles , Nanostructures , Ovalbumin , Peptide Hydrolases , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...