Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114179, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691455

ABSTRACT

Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.


Subject(s)
Arabidopsis , Cell Wall , Plant Diseases , Plant Roots , Ralstonia solanacearum , Plant Roots/microbiology , Plant Roots/growth & development , Arabidopsis/microbiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/metabolism , Plant Diseases/microbiology , Cell Wall/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Soil Microbiology , Glucosyltransferases/metabolism
2.
Plant Physiol ; 195(2): 1694-1711, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38378170

ABSTRACT

The root system plays an essential role in plant growth and adaptation to the surrounding environment. The root clock periodically specifies lateral root prebranch sites (PBS), where a group of pericycle founder cells (FC) is primed to become lateral root founder cells and eventually give rise to lateral root primordia or lateral roots (LRs). This clock-driven organ formation process is tightly controlled by modulation of auxin content and signaling. Auxin perception entails the physical interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) or AUXIN SIGNALING F-BOX (AFBs) proteins with AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to form a co-receptor system. Despite the apparent simplicity, the understanding of how specific auxin co-receptors are assembled remains unclear. We identified the compound bis-methyl auxin conjugated with N-glucoside, or BiAux, in Arabidopsis (Arabidopsis thaliana) that specifically induces the formation of PBS and the emergence of LR, with a slight effect on root elongation. Docking analyses indicated that BiAux binds to F-box proteins, and we showed that BiAux function depends on TIR1 and AFB2 F-box proteins and AUXIN RESPONSE FACTOR 7 activity, which is involved in FC specification and LR formation. Finally, using a yeast (Saccharomyces cerevisiae) heterologous expression system, we showed that BiAux favors the assemblage of specific co-receptors subunits involved in LR formation and enhances AUXIN/INDOLE-3-ACETIC ACID 28 protein degradation. These results indicate that BiAux acts as an allosteric modulator of specific auxin co-receptors. Therefore, BiAux exerts a fine-tune regulation of auxin signaling aimed to the specific formation of LR among the many development processes regulated by auxin.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Plant Roots , Indoleacetic Acids/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Signal Transduction , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Growth Regulators/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics
3.
Plant Commun ; 4(3): 100514, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36585788

ABSTRACT

Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field.


Subject(s)
Ecosystem , Plant Roots , Temperature , Plant Roots/metabolism , Meristem , Hot Temperature , Plants
4.
Front Plant Sci ; 13: 918537, 2022.
Article in English | MEDLINE | ID: mdl-35845642

ABSTRACT

Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.

5.
Plant Cell Environ ; 45(8): 2508-2519, 2022 08.
Article in English | MEDLINE | ID: mdl-35610185

ABSTRACT

HOP (HSP70-HSP90 organising protein) is a conserved family of co-chaperones well known in mammals for its role in the folding of signalling proteins associated with development. In plants, HOP proteins have been involved in the response to multiple stresses, but their role in plant development remains elusive. Herein, we describe that the members of the HOP family participate in different aspects of plant development as well as in the response to warm temperatures through the regulation of auxin signalling. Arabidopsis hop1 hop2 hop3 triple mutant shows different auxin-related phenotypes and a reduced auxin sensitivity. HOP interacts with TIR1 auxin coreceptor in vivo. Furthermore, TIR1 accumulation and auxin transcriptional response are reduced in the hop1 hop2 hop3 triple mutant, suggesting that HOP's function in auxin signalling is related, at least, to TIR1 interaction and stabilisation. Interestingly, HOP proteins form part of the same complexes as SGT1b (a different HSP90 co-chaperone) and these co-chaperones synergistically cooperate in auxin signalling. This study provides relevant data about the role of HOP in auxin regulation in plants and uncovers that both co-chaperones, SGT1b and HOP, cooperate in the stabilisation of common targets involved in plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , F-Box Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Indoleacetic Acids/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Receptors, Cell Surface/metabolism
6.
New Phytol ; 233(5): 1988-1997, 2022 03.
Article in English | MEDLINE | ID: mdl-34942016

ABSTRACT

Roots anchor plants to the soil, providing them with nutrients and water while creating a defence network and facilitating beneficial interactions with a multitude of living organisms and climatological conditions. To facilitate morphological and molecular studies, root research has been conducted using in vitro systems. However, under natural conditions, roots grow in the dark, mainly in the absence of illumination, except for the relatively low illumination of the upper soil surface, and this has been largely ignored. Here, we discuss the results found over the last decade on how experimental exposure of roots to light may bias root development and responses through the alteration of hormonal signalling, cytoskeleton organization, reactive oxygen species or the accumulation of flavonoids, among other factors. Illumination alters the uptake of nutrients or water, and also affects the response of the roots to abiotic stresses and root interactions with the microbiota. Furthermore, we review in vitro systems created to maintain roots in darkness, and provide a comparative analysis of root transcriptomes obtained with these devices. Finally, we identify other experimental variables that should be considered to better mimic soil conditions, whose improvement would benefit studies using in vitro cultivation or enclosed ecosystems.


Subject(s)
Microbiota , Plant Roots , Gene-Environment Interaction , Lighting , Plant Roots/physiology , Plants , Rhizosphere
8.
Cryobiology ; 99: 64-77, 2021 04.
Article in English | MEDLINE | ID: mdl-33485896

ABSTRACT

Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.


Subject(s)
Semen Preservation , Animals , Cryopreservation/methods , Epididymis , Male , Proteome , Ruminants , Semen Preservation/veterinary , Sperm Motility , Spermatozoa
9.
Plants (Basel) ; 9(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295129

ABSTRACT

Fluorescence-activated cell sorting (FACS) is a technique used to isolate specific cell populations based on characteristics detected by flow cytometry. FACS has been broadly used in transcriptomic analyses of individual cell types during development or under different environmental conditions. Different protoplast extraction protocols are available for plant roots; however, they were designed for accessible cell populations, which normally were grown in the presence of light, a non-natural and stressful environment for roots. Here, we report a protocol using FACS to isolate root protoplasts from Arabidopsis green fluorescent protein (GFP)-marked lines using the minimum number of enzymes necessary for an optimal yield, and with the root system grown in darkness in the D-Root device. This device mimics natural conditions as the shoot grows in the presence of light while the roots grow in darkness. In addition, we optimized this protocol for specific patterns of scarce cell types inside more differentiated tissues using the mCherry fluorescent protein. We provide detailed experimental protocols for effective protoplasting, subsequent purification through FACS, and RNA extraction. Using this RNA, we generated cDNA and sequencing libraries, proving that our methods can be used for genome-wide transcriptomic analyses of any cell-type from roots grown in darkness.

10.
Plants (Basel) ; 9(2)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079121

ABSTRACT

Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5'-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and fip1-2-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.

11.
New Phytol ; 224(1): 242-257, 2019 10.
Article in English | MEDLINE | ID: mdl-31230346

ABSTRACT

Phosphate (Pi) is an essential nutrient for all organisms. Roots are underground organs, but the majority of the root biology studies have been done on root systems growing in the presence of light. Root illumination alters the Pi starvation response (PSR) at different intensities. Thus, we have analyzed morphological, transcriptional and physiological responses to Pi starvation in dark-grown roots. We have identified new genes and pathways regulated by Pi starvation that were not described previously. We also show that Pi-starved plants increase the cis-zeatin (cZ) : trans-zeatin (tZ) ratio. Transcriptomic analyses show that tZ preferentially represses cell cycle and PSR genes, whereas cZ induces genes involved in cell and root hair elongation and differentiation. In fact, cZ-treated seedlings show longer root system as well as longer root hairs compared with tZ-treated seedlings, increasing the total absorbing surface. Mutants with low cZ concentrations do not allocate free Pi in roots during Pi starvation. We propose that Pi-starved plants increase the cZ : tZ ratio to maintain basal cytokinin responses and allocate Pi in the root system to sustain its growth. Therefore, cZ acts as a PSR hormone that stimulates root and root hair elongation to enlarge the root absorbing surface and to increase Pi concentrations in roots.


Subject(s)
Phosphates/deficiency , Plant Roots/metabolism , Zeatin/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Light , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/radiation effects , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/radiation effects , Zeatin/pharmacology
12.
J Exp Bot ; 68(18): 5103-5116, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29106622

ABSTRACT

Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basidiomycota/physiology , Mannosyltransferases/metabolism , Peroxidases/metabolism , beta-Glucosidase/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Cell Division , Glycosylation , Hydrogen-Ion Concentration , Introns/genetics , Mannosyltransferases/genetics , Meristem/genetics , Meristem/growth & development , Meristem/radiation effects , Mutation , Peroxidases/genetics , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/radiation effects , Proteomics , RNA Splicing , Reactive Oxygen Species/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , beta-Glucosidase/genetics
13.
New Phytol ; 213(4): 1787-1801, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27859363

ABSTRACT

Plant growth and development require a continuous balance between cell division and differentiation. In root meristems, differentiated cells acquire specialized functions, losing their mitotic potential. Some plant cells, such as pericycle cells, have a remarkable plasticity to regenerate new organs. The molecular mechanisms underlying cell reprogramming are not completely known. In this work, a functional screening of transcription factors identified Arabidopsis OBP4 (OBF Binding Protein 4) as a novel regulator of root growth and cell elongation and differentiation. Overexpression of OBP4 regulates the levels of a large number of transcripts in roots, many involved in hormonal signaling and callus formation. OBP4 controls cell elongation and differentiation in root cells. OBP4 does not induce cell division in the root meristem, but promotes pericycle cell proliferation, forming callus-like structures at the root tip, as shown by the expression of stem cell markers. Callus formation is enhanced by ectopic expression of OBP4 in the wild-type or alf4-1, but is significantly reduced in roots that have lower levels of OBP4. Our data provide molecular insights into how differentiated root cells acquire the potential to generate callus, a pluripotent mass of cells that can regenerate fully functional plant organs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Plant Roots/growth & development , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Cell Division/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Meristem/cytology , Meristem/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/cytology , Plant Roots/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics
14.
New Phytol ; 213(1): 105-112, 2017 01.
Article in English | MEDLINE | ID: mdl-27891649

ABSTRACT

Root branching in plants relies on the de novo formation of lateral roots. These are initiated from founder cells, triggering new formative divisions that generate lateral root primordia (LRP). The LRP size and shape depends on the balance between positive and negative signals that control cell proliferation. The mechanisms controlling proliferation potential of LRP cells remains poorly understood. We found that Arabidopsis thaliana MYB36, which have been previously shown to regulate genes required for Casparian strip formation and the transition from proliferation to differentiation in the primary root, plays a new role in controlling LRP development at later stages. We found that MYB36 is a novel component of LR development at later stages. MYB36 was expressed in the cells surrounding LRP where it controls a set of peroxidase genes, which maintain reactive oxygen species (ROS) balance. This was required to define the transition between proliferating and arrested cells inside the LRP, coinciding with the change from flat to dome-shaped primordia. Reducing the levels of hydrogen peroxide (H2 O2 ) in myb36-5 significantly rescues the mutant phenotype. Our results uncover a role for MYB36 outside the endodermis during LRP development through a mechanism analogous to regulating the proliferation/differentiation transition in the root meristem.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Proliferation , Gene Expression Regulation, Plant , Genes, Plant , Homeostasis , Plant Roots/anatomy & histology , Plant Roots/cytology , Reactive Oxygen Species/metabolism , Transcription Factors/genetics
15.
Plant Cell ; 28(6): 1372-87, 2016 06.
Article in English | MEDLINE | ID: mdl-26628743

ABSTRACT

Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Flavonols/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Cell Differentiation/physiology , Cell Differentiation/radiation effects , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Light , Phototropism/genetics , Phototropism/physiology , Plant Growth Regulators/metabolism , Plant Roots/physiology , Plant Roots/radiation effects , Signal Transduction/physiology , Signal Transduction/radiation effects
16.
Plant J ; 84(1): 244-55, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26312572

ABSTRACT

In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.


Subject(s)
Darkness , Light , Plant Roots/growth & development , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/radiation effects , Plant Roots/physiology , Plant Roots/radiation effects
17.
Plant Physiol ; 165(3): 1105-1119, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24879433

ABSTRACT

Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.

18.
Plant Cell Environ ; 37(12): 2722-37, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24716850

ABSTRACT

Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Droughts , Tetraploidy , Abscisic Acid/pharmacology , Adaptation, Physiological/drug effects , Arabidopsis/cytology , Arabidopsis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Homeostasis/drug effects , Hydrogen Peroxide/pharmacology , Nucleotide Motifs/genetics , Organ Size/drug effects , Organ Size/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , Plant Stomata/drug effects , Plant Stomata/physiology , Salt Tolerance/drug effects , Salt Tolerance/genetics , Transcription Factors/metabolism
19.
Plant J ; 77(6): 944-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24456507

ABSTRACT

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a ß-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon ß-estradiol treatment. As a proof of concept for the exploitation of this resource, ß-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.


Subject(s)
Arabidopsis/genetics , Plants, Genetically Modified , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Abscisic Acid/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Complementary/genetics , Estradiol/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors , Germination , Phenotype , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Seedlings/genetics , Seedlings/metabolism , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics , Transgenes
20.
J Exp Bot ; 65(10): 2617-32, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24215077

ABSTRACT

Plants are sessile organisms that have to adapt their growth to the surrounding environment. Concomitant with this adaptation capability, they have adopted a post-embryonic development characterized by continuous growth and differentiation abilities. Constant growth is based on the potential of stem cells to divide almost incessantly and on a precise balance between cell division and cell differentiation. This balance is influenced by environmental conditions and by the genetic information of the cell. Among the internal cues, the cross-talk between different hormonal signalling pathways is essential to control this division/differentiation equilibrium. Auxin, one of the most important plant hormones, regulates cell division and differentiation, among many other processes. Amazing advances in auxin signal transduction at the molecular level have been reported, but how this signalling is connected to the cell cycle is, so far, not well known. Auxin signalling involves the auxin-dependent degradation of transcription repressors by F-box-containing E3 ligases of ubiquitin. Recently, SKP2A, another F-box protein, was shown to bind auxin and to target cell-cycle repressors for proteolysis, representing a novel mechanism that links auxin to cell division. In this review, a general vision of what is already known and the most recent advances on how auxin signalling connects to cell division and the role of the ubiquitin pathway in plant cell cycle will be covered.


Subject(s)
Cell Cycle , Indoleacetic Acids/metabolism , Ubiquitin/metabolism , Plants/enzymology , Plants/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL