Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 198: 106999, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984504

ABSTRACT

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Cells, Cultured , Fruit , Mammals/genetics , Mammals/metabolism
2.
Pharmacol Res ; 185: 106472, 2022 11.
Article in English | MEDLINE | ID: mdl-36182038

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression. The wide-ranging biological activities of microRNAs stimulated research on disease mechanisms and is suggesting appealing therapeutic applications. When unprotected, miRNAs suffer from rapid degradation and appropriate strategies need to be developed to improve their therapeutic potential. Since the first observation of miRNAs being naturally transported by extracellular vesicles (EVs), the latter have been proposed as specific transport means for drug delivery, conferring stability and increasing resistance against RNase degradation. However, a standard, reproducible, and cost-effective protocol for EV isolation is lacking. Here, the use of broccoli-derived EVs as a therapeutic vehicle for extracellular RNA drug delivery was assessed. EVs were isolated from broccoli, combining ultracentrifugation and size exclusion chromatography methodology. Caco-2 cells were exposed to isolated EVs loaded with exogenous miRNAs and cellular viability was tested. The miRNAs were taken up by this intestinal cell line. Our results show that broccoli EVs can be efficiently isolated, characterized, and loaded with exogenous miRNAs, leading to toxicity in caco-2 cells. Because the pharmaceutical industry is searching for novel drug delivery nanovesicles with intrinsic properties such as low immunogenicity, stability to the gastrointestinal tract, ability to overcome biological barriers, large-scale production, cost-effectiveness, etc., broccoli-isolated nanovesicles might be suitable candidates for future pharmacological applications. We propose broccoli as a natural source of EVs, which are capable of transporting exogenous miRNAs with potential therapeutic effects and suggest that appropriate toxicological and randomized controlled trials as well as patent applications are warranted.


Subject(s)
Brassica , Extracellular Vesicles , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Brassica/genetics , Brassica/metabolism , Caco-2 Cells , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods
3.
Int J Mol Sci ; 23(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35270004

ABSTRACT

Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells' ABC-mediated chemoresistance.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Exosomes , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Female , Humans , Milk , Polyphenols/pharmacology , Rats , Resveratrol/pharmacology , Resveratrol/therapeutic use
5.
Eur J Nutr ; 61(2): 1043-1056, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34716465

ABSTRACT

PURPOSE: Extracellular RNAs are unstable and rapidly degraded unless protected. Bovine-milk extracellular vesicles (EVs) confer protection to dietary miRNAs, although it remains unclear whether this importantly improves their chances of reaching host target cells to exert biological effects. METHODS: Caco-2, HT-29, Hep-G2 and FHs-74 cell lines were exposed to natural/labelled milk EVs to evaluate cellular uptake. Five frequently reported human milk miRNAs (miR-146b-5p, miR-148a-3p, miR-30a-5p, miR-26a-5p, and miR-22-3p) were loaded into EVs. The intracellular concentration of each miRNA in cells was determined. In addition, an animal study giving an oral dose of loaded EVs in C57BL6/ mice were performed. Gene expression regulation was assessed by microarray analysis. RESULTS: Digestive stability analysis showed high overall degradation of exogenous miRNAs, although EV-protected miRNAs better resisted gastrointestinal digestion compared to free miRNAs (tenfold higher levels). Importantly, orally delivered EV-loaded miRNAs reached host organs, including brain, in mice. However, no biological effect has been identified. CONCLUSION: Milk EVs protect miRNAs from degradation and facilitate cellular uptake. miRNA concentration in EVs from bovine milk might be insufficient to produce gene modulation. Nevertheless, sizable amounts of exogenous miRNAs may be loaded into EVs, and orally delivered EV-loaded miRNAs can reach tissues in vivo, increasing the possibility of exerting biological effects. Further investigation is justified as this could have an impact in the field of nutrition and health (i.e., infant formulas elaboration).


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Caco-2 Cells , Digestion , Extracellular Vesicles/metabolism , Gene Expression , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Milk, Human/metabolism
6.
J Agric Food Chem ; 69(32): 9326-9337, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34358423

ABSTRACT

Broccoli (Brassica oleracea var. italica) and its bioactive compounds are associated with beneficial health effects, which might be enabled, at least in part, through miRNA regulation, despite recent controversial studies suggesting that exogenous dietary miRNAs may reach host circulation and target cells to regulate gene expression. Here, a computational analysis was performed to explore the processes and pathways associated with genes targeted either by (1) host-expressed miRNAs (endogenous) modulated by the bioactive compounds in broccoli or (2) miRNAs derived from broccoli (exogenous). In addition, the stability of exogenous miRNAs from broccoli was assessed after broccoli was subjected to the usual processing methods and in vitro digestion-simulating gastrointestinal (GI) conditions. Overall, bioinformatic results show that the anticarcinogenic and cancer-preventive properties attributed to cruciferous vegetables might be mediated, at least in part, through miRNA-related mechanisms. Moreover, results show that broccoli-derived miRNAs can survive common food-processing conditions and GI digestion.


Subject(s)
Brassica , MicroRNAs , Brassica/genetics , Diet , Digestion , Food Handling , Humans , MicroRNAs/genetics
7.
Eur J Nutr ; 60(8): 4279-4293, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027583

ABSTRACT

PURPOSE: Exosomes are extracellular vesicles secreted by cells, which can transport different molecules, including nucleic acids. Dietary habits may induce gene regulation through the modulation of exosomal RNAs. We aimed at characterizing exosomal lncRNAs, mRNA and miRNAs modulation after a 1-year adherence to a low-fat diet (LFD) or to Mediterranean-based diets enriched in extra-virgin olive oil (MedDiet + EVOO) or in a mixture of nuts (MedDiet + Nuts). METHODS: Plasma samples were collected, at baseline and after 1 year of dietary interventions, from 150 participants included in the PREDIMED study (Reus Center). LncRNAs, mRNAs and miRNAs were isolated from plasma exosomes and screened. RT-qPCR validation was performed for miRNAs. RESULTS: Compared with LFD, 413 lncRNAs and 188 mRNAs, and 476 lncRNAs and 235 mRNAs were differentially modulated in response to the MedDiet + EVOO and MedDiet + Nuts interventions, respectively. In addition, after 1 year of dietary interventions, 26 circulating miRNAs were identified as differentially expressed between groups. After 1 year of intervention, 11 miRNAs significantly changed in LFD group, while 8 and 21 were modulated in response to the MedDiet enriched with EVOO or nuts, respectively. Bioinformatic analyses of differentially expressed miRNAs and their validated target genes suggest certain metabolic pathways are modulated by LFD (PI3K-Akt and AMPK), MedDiet + EVOO (PI3K-Akt, NF-kappa B, HIF-1, and insulin resistance), and MedDiet-Nuts (FoxO, PI3K-Akt, AMPK, p53 and HIF-1) interventions. CONCLUSION: Results show that 1-year MedDiet + Nuts and MedDiet + EVOO dietary interventions modulate exosomal RNA content, with the former affecting a higher number of miRNAs. The modulation of exosomal RNAs could help explain how the adherence to a Mediterranean diet may lead to beneficial effects and deserves further investigation.


Subject(s)
Diet, Mediterranean , MicroRNAs , Diet, Fat-Restricted , Humans , MicroRNAs/genetics , Nuts , Olive Oil , Phosphatidylinositol 3-Kinases
8.
Br J Pharmacol ; 178(11): 2218-2245, 2021 06.
Article in English | MEDLINE | ID: mdl-33644849

ABSTRACT

Cross-kingdom communication via non-coding RNAs is a recent discovery. Exogenous microRNAs (exog-miRNAs) mainly enter the host via the diet. Generally considered unstable in the gastrointestinal tract, some exogenous RNAs may resist these conditions, especially if transported in extracellular vesicles. They could then reach the intestines and more probably exert a regulatory effect. We give an overview of recent discoveries concerning dietary miRNAs, possible ways of enhancing their resistance to food processing and gut conditions, their transport in extracellular vesicles (animal- and plant-origin) and possible biological effects on recipient cells after ingestion. We critically focus on what we believe are the most relevant data for future pharmacological development of dietary miRNAs as therapeutic agents. Finally, we discuss the miRNA-mediated cross-kingdom regulation between diet, host and the gut microbiota. We conclude that, despite many obstacles and challenges, extracellular miRNAs are serious candidates to be targeted pharmacologically for development of new therapeutic agents.


Subject(s)
Extracellular Vesicles , Gastrointestinal Microbiome , MicroRNAs , Animals , Diet , Gastrointestinal Tract , Humans , MicroRNAs/genetics
9.
Int J Mol Sci ; 22(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499350

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs with a known role as mediators of gene expression in crucial biological processes, which converts them into high potential contenders in the ongoing search for effective therapeutic strategies. However, extracellular RNAs are unstable and rapidly degraded, reducing the possibility of successfully exerting a biological function in distant target cells. Strategies aimed at enhancing the therapeutic potential of miRNAs include the development of efficient, tissue-specific and nonimmunogenic delivery methods. Since miRNAs were discovered to be naturally transported within exosomes, a type of extracellular vesicle that confers protection against RNase degradation and increases miRNA stability have been proposed as ideal delivery vehicles for miRNA-based therapy. Although research in this field has grown rapidly in the last few years, a standard, reproducible and cost-effective protocol for exosome isolation and extracellular RNA delivery is lacking. We aimed to evaluate the use of milk-derived extracellular vesicles as vehicles for extracellular RNA drug delivery. With this purpose, exosomes were isolated from raw bovine milk, combining ultracentrifugation and size exclusion chromatography (SEC) methodology. Isolated exosomes were then loaded with exogenous hsa-miR148a-3p, a highly expressed miRNA in milk exosomes. The suitability of exosomes as delivery vehicles for extracellular RNAs was tested by evaluating the absorption of miR-148a-3p in hepatic (HepG2) and intestinal (Caco-2) cell lines. The potential exertion of a biological effect by miR-148a-3p was assessed by gene expression analysis, using microarrays. Results support that bovine milk is a cost-effective source of exosomes which can be used as nanocarriers of functional miRNAs with a potential use in RNA-based therapy. In addition, we show here that a combination of ultracentrifugation and SEC technics improve exosome enrichment, purity, and integrity for subsequent use.


Subject(s)
Drug Delivery Systems , Exosomes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Milk/chemistry , Nanoparticles/chemistry , Animals , Caco-2 Cells , Cattle , Cluster Analysis , Hep G2 Cells , Humans , MicroRNAs/chemistry , Oligonucleotide Array Sequence Analysis
10.
Eur J Nutr ; 60(4): 1999-2011, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32979076

ABSTRACT

PURPOSE: Epidemiological studies and clinical trials support the association of nut consumption with a lower risk of prevalent non-communicable diseases, particularly cardiovascular disease. However, the molecular mechanisms underlying nut benefits remain to be fully described. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and play a pivotal role in health and disease. Exosomes are extracellular vesicles released from cells and mediate intercellular communication. Whether nut consumption modulates circulating miRNAs (c-miRNAs) transported in exosomes is poorly described. METHODS: Cognitively healthy elderly subjects were randomized to either control (n = 110, abstaining from walnuts) or daily supplementation with walnuts (15% of their total energy, ≈30-60 g/day, n = 101) for 1-year. C-miRNAs were screened in exosomes isolated from 10 samples, before and after supplementation, and identified c-miRNA candidates were validated in the whole cohort. In addition, nanoparticle tracking analysis and lipidomics were assessed in pooled exosomes from the whole cohort. RESULTS: Exosomal hsa-miR-32-5p and hsa-miR-29b-3p were consistently induced by walnut consumption. No major changes in exosomal lipids, nanoparticle concentration or size were found. CONCLUSION: Our results provide novel evidence that certain c-miRNAs transported in exosomes are modulated by walnut consumption. The extent to which this finding contributes to the benefits of walnuts deserves further research.


Subject(s)
Exosomes , Juglans , MicroRNAs , Dietary Supplements , Nuts
11.
Sci Rep ; 10(1): 18921, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144601

ABSTRACT

The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


Subject(s)
Dietary Fats/pharmacology , Intestines/drug effects , MicroRNAs/genetics , Organoids/drug effects , Adult Stem Cells/chemistry , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Caco-2 Cells , Cell Differentiation/drug effects , Cells, Cultured , DEAD-box RNA Helicases/genetics , Female , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Intestines/chemistry , Intestines/cytology , Lipid Metabolism , Male , Mice , Organoids/chemistry , Organoids/cytology , Ribonuclease III/genetics , Sequence Analysis, RNA , Sex Characteristics , Time Factors
12.
Food Funct ; 10(8): 4897-4910, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31339147

ABSTRACT

Hydroxytyrosol (HT) is involved in healthful activities and is beneficial to lipid metabolism. Many investigations focused on finding tissue-specific targets of HT through the use of different omics approaches such as transcriptomics and proteomics. However, it is not clear which (if any) of the potential molecular targets of HT reported in different studies are concurrently affected in various tissues. Following the bioinformatic analyses of publicly available data from a selection of in vivo studies involving HT-supplementation, we selected differentially expressed lipid metabolism-related genes and proteins common to more than one study, for validation in rodent liver samples from the entire selection. Four miRNAs (miR-802-5p, miR-423-3p, miR-30a-5p, and miR-146b-5p) responded to HT supplementation. Of note, miR-802-5p was commonly regulated in the liver and intestine. Our premise was that, in an organ crucial for lipid metabolism such as the liver, consistent modulation should be found for a specific target of HT even if different doses and duration of HT supplementation were used in vivo. Even though our results show inconsistency regarding differentially expressed lipid metabolism-related genes and proteins across studies, we found Fgf21 and Rora as potential novel targets of HT. Omics approaches should be fine-tuned to better exploit the available databases.


Subject(s)
Phenylethyl Alcohol/analogs & derivatives , Proteins/genetics , Computational Biology , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , MicroRNAs/metabolism , Phenylethyl Alcohol/pharmacology , Proteins/metabolism , Proteomics
13.
Nutrients ; 11(6)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200481

ABSTRACT

Postprandial lipemia has many physiopathological effects, some of which increase the risk of cardiovascular disease. MicroRNAs (miRNAs) can be found in almost all biological fluids, but their postprandial kinetics are poorly described. We aimed to profile circulating miRNAs in response to a fat challenge. In total, 641 circulating miRNAs were assessed by real-time PCR in plasmas from mice two hours after lipid gavage. Mice with intestine-specific loss of Dicer were screened to identify potential miRNAs released by the intestine. A total of 68 miRNAs were selected for further validation. Ten circulating miRNAs were finally validated as responsive to postprandial lipemia, including miR-206-3p, miR-543-3p, miR-466c-5p, miR-27b-5p, miR-409-3p, miR-340-3p, miR-1941-3p, miR-10a-3p, miR-125a-3p, and miR-468-3p. Analysis of their possible tissues of origin/target showed an enrichment of selected miRNAs in liver, intestine, brain, or skeletal muscle. miR-206, miR-27b-5p, and miR-409-3p were validated in healthy humans. Analysis of their predicted target genes revealed their potential involvement in insulin/insulin like growth factor (insulin/IGF), angiogenesis, cholecystokinin B receptor signaling pathway (CCKR), inflammation or Wnt pathways for mice, and in platelet derived growth factor (PDGF) and CCKR signaling pathways for humans. Therefore, the current study shows that certain miRNAs are released in the circulation in response to fatty meals, proposing them as potential novel therapeutic targets of lipid metabolism.


Subject(s)
Circulating MicroRNA/blood , Dietary Fats/adverse effects , Hyperlipidemias/etiology , Postprandial Period/drug effects , Animals , Humans , Mice , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...