Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579451

ABSTRACT

Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.

2.
Environ Microbiol ; 23(7): 3435-3459, 2021 07.
Article in English | MEDLINE | ID: mdl-32666586

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Transcriptome , Aspergillus/genetics , Biodegradation, Environmental , Gene Expression Profiling , Transcriptome/genetics
3.
J Air Waste Manag Assoc ; 70(12): 1260-1267, 2020 12.
Article in English | MEDLINE | ID: mdl-32603633

ABSTRACT

The present study deals with the development of a wood assisted fungal system (WAFS) from wood chips using Trametes hirsuta to remove polycyclic aromatic hydrocarbons (PAHs) in BRW. The WAFS exhibited a 1.4-fold higher ligninolytic enzyme production than free fungi in the effluent. Further, to understand PAHs bioremediation by T. hirsuta, biodegradation along with biosorption were studied in model PAHs, phenanthrene (Phe) and benzo (a) pyrene (BaP), in the presence of synthesized rhamnolipids. The WAFS mineralized up to an average of 91.26% Phe and 87.72 % BaP along with biosorption of 12.35% Phe and 18.36 % BaP within 12 days. Thus, the addition of rhamnolipids showed 1.2-fold enhanced biodegradation. However, rhamnolipid concentrations beyond 50 ppm reduced the degradation efficiency of WAFS. Moreover, the degradation capability of total aromatic hydrocarbon (TAH) in biorefinery wastewater by WAFS is 1.8-fold higher than that of free fungi, which confirms the effectiveness of the system. Implications: Simultaneous application of white-rot fungus along with surfactant into a pollutant environment affects the microenvironment of the fungus and reduces the production of their degradative enzymes. In addition, the requirement of periodical supplement of external nutrient in the real-time matrix for the growth of white rot fungi may trigger competitive growth of indigenous microorganisms. Considering this glitch, the current work utilizes the carpenter waste for the strategical develop a wood assisted fungal system to protect the microenvironment of the fungi in the presence of rhamnolipids and contribute to their survival in real time matrix, with enhanced PAHs degradation efficiency.


Subject(s)
Benzo(a)pyrene/metabolism , Glycolipids/pharmacology , Phenanthrenes/metabolism , Polyporaceae/drug effects , Water Pollutants, Chemical/metabolism , Alcohol Oxidoreductases/metabolism , Biodegradation, Environmental , Laccase/metabolism , Peroxidases/metabolism , Polyporaceae/enzymology , Polyporaceae/metabolism , Wood
4.
Microbiol Res ; 232: 126394, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865222

ABSTRACT

Extreme ecosystems are a possible source of new interesting microorganisms, in this study the isolation of psychrophilic and psychrotolerant plant growth promoting microorganisms was pursued in a cold habitat, with the aim of finding novel microbes that can protect crops from cold. Eight yeast and four bacterial strains were isolated from rhizospheric soil collected from the Xinantécatl volcano in Mexico, and characterized for plant growth promoting properties. Most of the yeasts produced indole acetic acid and hydrolytic enzymes (cellulases, xilanases and chitinases), but none of them produced siderophores, in contrast to their bacterial counterparts. Inorganic phosphate solubilization was detected for all the bacterial strains and for two yeast strains. Yeast and bacterial strains may inhibit growth of various pathogenic fungi, propounding a role in biological control. Microorganisms were identified up to genera level, by applying ribotyping techniques and phylogenetic analysis. Bacterial strains belonged to the genus Pseudomonas, whereas yeast strains consisted of Rhodotorula sp. (4), Mrakia sp. (3) and Naganishia sp. (1). New species belonging to the aforementioned genera seem to have been isolated from both bacteria and yeasts. Germination promoting activity on Solanum lycopersicum seeds was detected for all strains compared to a control, whereas tomato plantlets, grown at 15 °C in the presence of some of the strains, performed better than the non-inoculated plantlets. This study offers the possibility of using these strains as an additive to improve culture conditions of S. lycopersicum in a more environmentally compatible way. This is the first study to propose psychrophilic/psychrotolerant yeasts, as plant growth promoting microbes.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Phylogeny , Plant Development , Yeasts/classification , Yeasts/isolation & purification , Altitude , Cold Temperature , DNA/isolation & purification , Ecosystem , Fungi/pathogenicity , Germination , Indoleacetic Acids/metabolism , Solanum lycopersicum/growth & development , Mexico , Plant Diseases , Rhizosphere , Seeds/growth & development , Siderophores/metabolism , Soil Microbiology , Stress, Physiological , Volcanic Eruptions , Yeasts/physiology
6.
Proteins ; 83(3): 533-46, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25586442

ABSTRACT

A new gene from Bjerkandera adusta strain UAMH 8258 encoding a carbohydrate esterase (designated as BacesI) was isolated and expressed in Pichia pastoris. The gene had an open reading frame of 1410 bp encoding a polypeptide of 470 amino acid residues, the first 18 serving as a secretion signal peptide. Homology and phylogenetic analyses showed that BaCesI belongs to carbohydrate esterases family 4. Three-dimensional modeling of the protein and normal mode analysis revealed a breathing mode of the active site that could be relevant for esterase activity. Furthermore, the overall negative electrostatic potential of this enzyme suggests that it degrades neutral substrates and will not act on negative substrates such as peptidoglycan or p-nitrophenol derivatives. The enzyme shows a specific activity of 1.118 U mg(-1) protein on 2-naphthyl acetate. No activity was detected on p-nitrophenol derivatives as proposed from the electrostatic potential data. The deacetylation activity of the recombinant BaCesI was confirmed by measuring the release of acetic acid from several substrates, including oat xylan, shrimp shell chitin, N-acetylglucosamine, and natural substrates such as sugar cane bagasse and grass. This makes the protein very interesting for the biofuels production industry from lignocellulosic materials and for the production of chitosan from chitin.


Subject(s)
Coriolaceae/enzymology , Esterases/chemistry , Esterases/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Amino Acid Sequence , Base Sequence , Computational Biology/methods , Esterases/genetics , Fungal Proteins/genetics , Models, Molecular , Molecular Sequence Data , Sequence Alignment
7.
Mol Cell Proteomics ; 5(4): 635-51, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16352523

ABSTRACT

In brain, mRNAs are transported from the cell body to the processes, allowing for local protein translation at sites distant from the nucleus. Using subcellular fractionation, we isolated a fraction from rat embryonic day 18 brains enriched for structures that resemble amorphous collections of ribosomes. This fraction was enriched for the mRNA encoding beta-actin, an mRNA that is transported in dendrites and axons of developing neurons. Abundant protein components of this fraction, determined by tandem mass spectrometry, include ribosomal proteins, RNA-binding proteins, microtubule-associated proteins (including the motor protein dynein), and several proteins described only as potential open reading frames. The conjunction of RNA-binding proteins, transported mRNA, ribosomal machinery, and transporting motor proteins defines these structures as RNA granules. Expression of a subset of the identified proteins in cultured hippocampal neurons confirmed that proteins identified in the proteomics were present in neurites associated with ribosomes and mRNAs. Moreover many of the expressed proteins co-localized together. Time lapse video microscopy indicated that complexes containing one of these proteins, the DEAD box 3 helicase, migrated in dendrites of hippocampal neurons at the same speed as that reported for RNA granules. Although the speed of the granules was unchanged by activity or the neurotrophin brain-derived neurotrophic factor, brain-derived neurotrophic factor, but not activity, increased the proportion of moving granules. These studies define the isolation and composition of RNA granules expressed in developing brain.


Subject(s)
Brain/metabolism , RNA, Messenger/metabolism , Actins/genetics , Animals , Brain/embryology , Brain-Derived Neurotrophic Factor/metabolism , Immunohistochemistry , Microscopy, Immunoelectron , Neurites/metabolism , RNA, Messenger/isolation & purification , Rats , Reverse Transcriptase Polymerase Chain Reaction , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...