Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Econ Entomol ; 115(3): 826-834, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35419599

ABSTRACT

In Australia, destruction of overwintering pupae of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) has been a key component of mandatory resistance management schemes to constrain development of resistance to Bt toxins in transgenic cotton. This has been accomplished by tillage ('pupae busting'), but it is expensive and can interfere with farming operations. Bisexual attract-and-kill technology based on plant volatile formulations offers a potential alternative in some circumstances. We discuss strategies for using such products and describe two trials in which three applications of an attract-and-kill formulation substantially reduced the numbers of Helicoverpa spp. moths and the numbers of potentially overwintering eggs they laid. One trial tested a curative strategy in which the last generation of moths emerging from transgenic cotton was targeted. The other tested a preventive strategy which aimed to reduce the numbers of eggs in the last generation. The preventive strategy reduced egg numbers by about 90% and is now included as an optional alternative to pupae busting in resistance management strategies for Australian cotton. It is limited to fields which have not been defoliated prior to 31 March and was developed to be used primarily in southern New South Wales. In the 2020-2021 cotton season, it was adopted on approximately 60% of the eligible cotton area. We describe the process whereby the strategy was developed in collaboration with the transgenic technology provider, supported by the cotton industry, and approved by the regulatory authority.


Subject(s)
Moths , Sexual and Gender Minorities , Animals , Australia , Bacterial Proteins/genetics , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins , Humans , Insecticide Resistance , Moths/genetics , Pest Control, Biological , Plants, Genetically Modified/genetics , Pupa
2.
J Therm Biol ; 101: 103099, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34879917

ABSTRACT

Understanding the impact that heat stress has on critical life stages of an organism is essential when assessing population responses to extreme events. Heat stress may occur as repeated small-scale events or as a single prolonged event, which may cause different outcomes to the organism. Here, we subjected Helicoverpa punctigera (Wallengren) pupae to two temperatures (44.2 °C and 43 °C) and two exposure treatments - a single 3-h prolonged exposure prolonged and three repeated 1-h exposure period with 24 h recovery time between bouts - to assess the biological traits of individuals. The maximum temperatures were used as they were just below the critical thermal maximum (CTmax) 47.3 °C ± 0.3 °C of pupae for which they could survive exposure. Adults in the prolonged and repeated heat-stressed treatments had 1.70 and 3.34 more days to emergence and 1.57 and 3.30 days extended life span compared to those kept under a constant 25 °C temperature (control treatment). Both pre-oviposition and oviposition periods were extended in the heat-stressed groups. Fecundity in the prolonged and repeated heat-stressed females was reduced by 34.7% and 65.5% eggs in the 43 °C treatment group and by 94.3% and 93.6% eggs in the 44.2 °C treatment group compared to the control group. No eggs from females in either the prolonged and repeated heat-stress groups hatched. We establish that heat stress on pupae can influence the population dynamics of H. punctigera by reducing fecundity as well as extending the pre oviposition period, and affecting adult development. Also, as heat exposure on the parent generation resulted in no offspring production, it is critical to assess cross-generational responses to extreme heat stress.


Subject(s)
Hot Temperature/adverse effects , Moths/physiology , Animals , Female , Fertility , Heat-Shock Response , Longevity , Male , Population Dynamics , Pupa , Reproduction
3.
Annu Rev Entomol ; 63: 453-470, 2018 01 07.
Article in English | MEDLINE | ID: mdl-29058978

ABSTRACT

Attract-and-kill has considerable potential as a tactic in integrated management of pests of agricultural crops, but the use of sex pheromones as attractants is limited by male multiple mating and immigration of mated females into treated areas. Attractants for both sexes, and particularly females, would minimize these difficulties. Volatile compounds derived from plants or fermentation of plant products can attract females and have been used in traps for monitoring and control, and in sprayable attract-and-kill formulations or bait stations. Recent advances in fundamental understanding of insect responses to plant volatiles should contribute to the development of products that can help manage a wide range of pests with few impacts on nontarget organisms, but theory must be tempered with pragmatism in the selection of volatiles and toxicants and in defining their roles in formulations. Market requirements and regulatory factors must be considered in parallel with scientific constraints if successful products are to be developed.


Subject(s)
Insect Control/methods , Insecta , Sex Attractants , Agriculture , Animals , Technology Transfer , Volatile Organic Compounds
4.
J Chem Ecol ; 42(7): 676-88, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27388286

ABSTRACT

Responses of non-target insects to a blend of plant volatiles used as components in an attract-and-kill formulation for Helicoverpa spp. (Lepidoptera: Noctuidae) were studied in an Australian cotton field. Two experiments, one involving suction sampling during the day and the other at night, were conducted. Rows that had been treated with the volatile blend, with no added insecticide, were sampled with a large suction sampler 18, 42, and 85 h (day experiment) and 6, 30, and 78 h (night experiment) after treatment. Rows located 5, 10, 20, and 300 m away from the treated row were similarly sampled. Of seven generalist predators, only one accumulated on the treated rows compared to the untreated rows. Of the other six, five were found in lower numbers on the treated rows, and for one no significant effects were detected. Compared to pre-spray baseline levels, numbers of several taxa increased across the whole field after spraying, suggesting area-wide attraction, but localized responses to the treated rows were weak, and apparent repellence was more common than attraction. We suggest that attract-and-kill with plant volatiles should have minimal effects on populations of these predators, and is likely to be compatible with integrated pest management.


Subject(s)
Drug Compounding , Insect Control/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Predatory Behavior , Animals , Volatilization
5.
J Chem Ecol ; 42(7): 666-75, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27380035

ABSTRACT

We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.


Subject(s)
Ecological and Environmental Phenomena , Insect Control/methods , Insecticides/pharmacology , Sex Attractants/pharmacology , Animals , Female , Insect Control/legislation & jurisprudence , Insecticides/chemistry , Male , Sex Attractants/chemistry , Social Control, Formal , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL