Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Front Mol Neurosci ; 16: 1118746, 2023.
Article in English | MEDLINE | ID: mdl-37293543

ABSTRACT

The cation-chloride cotransporters KCC2 and NKCC1 regulate the intracellular Cl- concentration and cell volume of neurons and/or glia. The Cl- extruder KCC2 is expressed at higher levels than the Cl- transporter NKCC1 in mature compared to immature neurons, accounting for the developmental shift from high to low Cl- concentration and from depolarizing to hyperpolarizing currents through GABA-A receptors. Previous studies have shown that KCC2 expression is downregulated following central nervous system injury, returning neurons to a more excitable state, which can be pathological or adaptive. Here, we show that deafferentation of the dendritic segments of granule cells in the outer (oml) and middle (mml) molecular layer of the dentate gyrus via entorhinal denervation in vivo leads to cell-type- and layer-specific changes in the expression of KCC2 and NKCC1. Microarray analysis validated by reverse transcription-quantitative polymerase chain reaction revealed a significant decrease in Kcc2 mRNA in the granule cell layer 7 days post-lesion. In contrast, Nkcc1 mRNA was upregulated in the oml/mml at this time point. Immunostaining revealed a selective reduction in KCC2 protein expression in the denervated dendrites of granule cells and an increase in NKCC1 expression in reactive astrocytes in the oml/mml. The NKCC1 upregulation is likely related to the increased activity of astrocytes and/or microglia in the deafferented region, while the transient KCC2 downregulation in granule cells may be associated with denervation-induced spine loss, potentially also serving a homeostatic role via boosting GABAergic depolarization. Furthermore, the delayed KCC2 recovery might be involved in the subsequent compensatory spinogenesis.

2.
Sci Rep ; 12(1): 22530, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581670

ABSTRACT

Quantitative PCR (qPCR) is a widely used method to study gene expression changes following brain injury. The accuracy of this method depends on the tissue harvested, the time course analyzed and, in particular on the choice of appropriate internal controls, i.e., reference genes (RGs). In the present study we have developed and validated an algorithm for the accurate normalization of qPCR data using laser microdissected tissue from the mouse dentate gyrus after entorhinal denervation at 0, 1, 3, 7, 14 and 28 days postlesion. The expression stabilities of ten candidate RGs were evaluated in the denervated granule cell layer (gcl) and outer molecular layer (oml) of the dentate gyrus. Advanced software algorithms demonstrated differences in stability for single RGs in the two layers at several time points postlesion. In comparison, a normalization index of several stable RGs covered the entire post-lesional time course and showed high stability. Using these RGs, we validated our findings and quantified glial fibrillary acidic protein (Gfap) mRNA and allograft inflammatory factor 1 (Aif1/Iba1) mRNA in the denervated oml. We compared the use of single RGs for normalization with the normalization index and found that single RGs yield variable results. In contrast, the normalization index gave stable results. In sum, our study shows that qPCR can yield precise, reliable, and reproducible datasets even under such complex conditions as brain injury or denervation, provided appropriate RGs for the model are used. The algorithm reported here can easily be adapted and transferred to any other brain injury model.


Subject(s)
Brain , Neurons , Mice , Animals , RNA, Messenger/genetics , Neurons/metabolism , Brain/metabolism , Gene Expression
3.
Nature ; 612(7938): 123-131, 2022 12.
Article in English | MEDLINE | ID: mdl-36385530

ABSTRACT

Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Animals , Humans , Mice , Middle Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction , Mice, Transgenic , Plaque, Amyloid/metabolism , tau Proteins/metabolism
4.
Front Neuroanat ; 15: 682383, 2021.
Article in English | MEDLINE | ID: mdl-34122019

ABSTRACT

Sprouting of surviving axons is one of the major reorganization mechanisms of the injured brain contributing to a partial restoration of function. Of note, sprouting is maturation as well as age-dependent and strong in juvenile brains, moderate in adult and weak in aged brains. We have established a model system of complex organotypic tissue cultures to study sprouting in the dentate gyrus following entorhinal denervation. Entorhinal denervation performed after 2 weeks postnatally resulted in a robust, rapid, and very extensive sprouting response of commissural/associational fibers, which could be visualized using calretinin as an axonal marker. In the present study, we analyzed the effect of maturation on this form of sprouting and compared cultures denervated at 2 weeks postnatally with cultures denervated at 4 weeks postnatally. Calretinin immunofluorescence labeling as well as time-lapse imaging of virally-labeled (AAV2-hSyn1-GFP) commissural axons was employed to study the sprouting response in aged cultures. Compared to the young cultures commissural/associational sprouting was attenuated and showed a pattern similar to the one following entorhinal denervation in adult animals in vivo. We conclude that a maturation-dependent attenuation of sprouting occurs also in vitro, which now offers the chance to study, understand and influence maturation-dependent differences in brain repair in these culture preparations.

5.
Elife ; 92020 12 04.
Article in English | MEDLINE | ID: mdl-33275099

ABSTRACT

Large spines are stable and important for memory trace formation. The majority of large spines also contains synaptopodin (SP), an actin-modulating and plasticity-related protein. Since SP stabilizes F-actin, we speculated that the presence of SP within large spines could explain their long lifetime. Indeed, using 2-photon time-lapse imaging of SP-transgenic granule cells in mouse organotypic tissue cultures we found that spines containing SP survived considerably longer than spines of equal size without SP. Of note, SP-positive (SP+) spines that underwent pruning first lost SP before disappearing. Whereas the survival time courses of SP+ spines followed conditional two-stage decay functions, SP-negative (SP-) spines and all spines of SP-deficient animals showed single-phase exponential decays. This was also the case following afferent denervation. These results implicate SP as a major regulator of long-term spine stability: SP clusters stabilize spines, and the presence of SP indicates spines of high stability.


Subject(s)
Dendritic Spines/physiology , Microfilament Proteins/metabolism , Actins , Animals , Animals, Newborn , Female , Green Fluorescent Proteins , Hippocampus/cytology , Male , Mice , Mice, Knockout , Microdissection , Microfilament Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900929

ABSTRACT

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Subject(s)
Aging/metabolism , Amyloid/metabolism , Antigens, Surface/metabolism , Milk Proteins/metabolism , Vascular Diseases/metabolism , Aged, 80 and over , Amyloid/genetics , Animals , Antigens, Surface/genetics , Aorta/metabolism , Aorta/pathology , Brain Chemistry/physiology , Cerebrovascular Circulation/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Milk Proteins/genetics , Vascular Diseases/pathology
7.
Neuropharmacology ; 171: 108087, 2020 07.
Article in English | MEDLINE | ID: mdl-32272140

ABSTRACT

Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1-/-) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.


Subject(s)
Cyclic AMP , Cyclic Nucleotide-Gated Cation Channels/genetics , Nerve Tissue Proteins/genetics , Neuralgia/psychology , Pain/chemically induced , Pain/psychology , Animals , Cyclic Nucleotide-Gated Cation Channels/biosynthesis , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Inflammation/chemically induced , Inflammation/pathology , Injections, Spinal , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/pathology , Pain/pathology , Postural Balance/drug effects , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
8.
Cereb Cortex ; 30(4): 2185-2198, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31812981

ABSTRACT

The plasticity-related protein Synaptopodin (SP) has been implicated in neuronal plasticity. SP is targeted to dendritic spines and the axon initial segment, where it organizes the endoplasmic reticulum (ER) into the spine apparatus and the cisternal organelle, respectively. Here, we report an inducible third localization of SP in the somata of activated granule cell ensembles in mouse dentate gyrus. Using immunofluorescence and fluorescence in situ hybridization, we observed a subpopulation of mature granule cells (~1-2%) exhibiting perinuclear SP protein and a strong somatic SP mRNA signal. Double immunofluorescence labeling for Arc demonstrated that ~ 75% of these somatic SP-positive cells are also Arc-positive. Placement of mice into a novel environment caused a rapid (~2-4 h) induction of Arc, SP mRNA, and SP protein in exploration-induced granule cell ensembles. Lesion experiments showed that this induction requires input from the entorhinal cortex. Somatic SP colocalized with α-Actinin2, a known binding partner of SP. Finally, ultrastructural analysis revealed SP immunoprecipitate on dense plates linking cytoplasmic and perinuclear ER cisterns; these structures were absent in granule cells of SP-deficient mice. Our data implicate SP in the formation of contextual representations in the dentate gyrus and the behaviorally induced reorganization of cytoplasmic and perinuclear ER.


Subject(s)
Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Exploratory Behavior/physiology , Microfilament Proteins/biosynthesis , Neuronal Plasticity/physiology , Up-Regulation/physiology , Animals , Dentate Gyrus/ultrastructure , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/deficiency
9.
Front Mol Neurosci ; 12: 270, 2019.
Article in English | MEDLINE | ID: mdl-31798410

ABSTRACT

Collateral sprouting of surviving axons contributes to the synaptic reorganization after brain injury. To study this clinically relevant phenomenon, we used complex organotypic tissue cultures of mouse entorhinal cortex (EC) and hippocampus (H). Single EC-H cultures were generated to analyze associational sprouting, and double EC-H cultures were used to evaluate commissural sprouting of mossy cells in the dentate gyrus (DG) following entorhinal denervation. Entorhinal denervation (transection of the perforant path) was performed at 14 days in vitro (DIV) and associational/commissural sprouting was assessed at 28 DIV. First, associational sprouting was studied in genetically hybrid EC-H cultures of beta-actin-GFPtg and wild-type mice. Using calretinin as a marker, associational axons were found to re-innervate almost the entire entorhinal target zone. Denervation experiments performed with EC-H cultures of Thy1-YFPtg mice, in which mossy cells are YFP-positive, confirmed that the overwhelming majority of sprouting associational calretinin-positive axons are mossy cell axons. Second, we analyzed associational/commissural sprouting by combining wild-type EC-H cultures with calretinin-deficient EC-H cultures. In these cultures, only wild-type mossy cells contain calretinin, and associational and commissural mossy cell collaterals can be distinguished using calretinin as a marker. Nearly the entire DG entorhinal target zone was re-innervated by sprouting of associational and commissural mossy cell axons. Finally, viral labeling of newly formed associational/commissural axons revealed a rapid post-lesional sprouting response. These findings demonstrate extensive and rapid re-innervation of the denervated DG outer molecular layer by associational and commissural mossy cell axons, similar to what has been reported to occur in juvenile rodent DG in vivo.

10.
J Physiol ; 597(8): 2269-2295, 2019 04.
Article in English | MEDLINE | ID: mdl-30776090

ABSTRACT

KEY POINTS: The lateral superior olive (LSO), a brainstem hub involved in sound localization, integrates excitatory and inhibitory inputs from the ipsilateral and the contralateral ear, respectively. In gerbils and rats, inhibition to the LSO reportedly shifts from GABAergic to glycinergic within the first three postnatal weeks. Surprisingly, we found no evidence for synaptic GABA signalling during this time window in mouse LSO principal neurons. However, we found that presynaptic GABAB Rs modulate Ca2+ influx into medial nucleus of the trapezoid body axon terminals, resulting in reduced synaptic strength. Moreover, GABA elicited strong responses in LSO neurons that were mediated by extrasynaptic GABAA Rs. RNA sequencing revealed highly abundant δ subunits, which are characteristic of extrasynaptic receptors. Whereas GABA increased the excitability of neonatal LSO neurons, it reduced the excitability around hearing onset. Collectively, GABA appears to control the excitability of mouse LSO neurons via extrasynaptic and presynaptic signalling. Thus, GABA acts as a modulator, rather than as a classical transmitter. ABSTRACT: GABA and glycine mediate fast inhibitory neurotransmission and are coreleased at several synapse types. Here we assessed the contribution of GABA and glycine in synaptic transmission between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), two nuclei involved in sound localization. Whole-cell patch-clamp experiments in acute mouse brainstem slices at postnatal days (P) 4 and 11 during pharmacological blockade of GABAA receptors (GABAA Rs) and/or glycine receptors demonstrated no GABAergic synaptic component on LSO principal neurons. A GABAergic component was absent in evoked inhibitory postsynaptic currents and miniature events. Coimmunofluorescence experiments revealed no codistribution of the presynaptic GABAergic marker GAD65/67 with gephyrin, a postsynaptic marker for GABAA Rs, corroborating the conclusion that GABA does not act synaptically in the mouse LSO. Imaging experiments revealed reduced Ca2+ influx into MNTB axon terminals following activation of presynaptic GABAB Rs. GABAB R activation reduced the synaptic strength at P4 and P11. GABA appears to act on extrasynaptic GABAA Rs as demonstrated by application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, a δ-subunit-specific GABAA R agonist. RNA sequencing showed high mRNA levels for the δ-subunit in the LSO. Moreover, GABA transporters GAT-1 and GAT-3 appear to control extracellular GABA. Finally, we show an age-dependent effect of GABA on the excitability of LSO neurons. Whereas tonic GABA increased the excitability at P4, leading to spike facilitation, it decreased the excitability at P11 via shunting inhibition through extrasynaptic GABAA Rs. Taken together, we demonstrate a modulatory role of GABA in the murine LSO, rather than a function as a classical synaptic transmitter.


Subject(s)
Superior Olivary Complex/physiology , Trapezoid Body/physiology , gamma-Aminobutyric Acid/physiology , Animals , Calcium/physiology , Female , Glycine/physiology , Male , Mice, Inbred C57BL , Neurons/physiology , Receptors, GABA-A/physiology , Receptors, Glycine/physiology , Sound Localization , Synaptic Transmission
11.
Cereb Cortex ; 27(9): 4662-4675, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28922860

ABSTRACT

The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The function of this organelle is poorly understood, but roles in local Ca2+-trafficking and AIS plasticity are discussed. To investigate whether the presence and/or the size of COs are linked to the development and maturation of AIS of cortical neurons, we analyzed the relationship between COs and the AIS during visual cortex development under control and visual deprivation conditions. In wildtype mice, immunolabeling for synaptopodin, ankyrin-G, and ßIV-spectrin were employed to label COs and the AIS, respectively. Dark rearing resulted in an increase in synaptopodin cluster sizes, suggesting a homeostatic function of the CO in this cellular compartment. In line with this observation, synaptopodin-deficient mice lacking the CO showed AIS shortening in the dark. Collectively, these data demonstrate that the CO is an essential part of the AIS machinery required for AIS plasticity during a critical developmental period of the visual cortex.


Subject(s)
Axon Initial Segment/metabolism , Axons/metabolism , Microfilament Proteins/metabolism , Neuronal Plasticity/physiology , Visual Cortex/growth & development , Action Potentials/physiology , Animals , Endoplasmic Reticulum/metabolism , Mice, Inbred C57BL , Neurogenesis/physiology , Visual Cortex/metabolism
12.
J Invest Dermatol ; 137(3): 686-695, 2017 03.
Article in English | MEDLINE | ID: mdl-27818280

ABSTRACT

Platelets are well known for their role in hemostasis but are also increasingly recognized for their supporting role in innate immune responses. Here, we studied the role of platelets in the development of peripheral inflammation and found that platelets colocalize with macrophages in the inflamed tissue outside of blood vessels in different animal models for cutaneous inflammation. Collagen-treatment of macrophages isolated from paws during zymosan-induced inflammation induced thromboxane synthesis through the platelet-expressed collagen receptor glycoprotein VI. Deletion of glycoprotein VI or its downstream effector thromboxane A2 receptor (TP) reduced zymosan-induced mechanical allodynia without altering macrophage recruitment or formation of macrophage/platelet complexes. Instead, macrophages in inflamed paws of glycoprotein VI- and TP-deficient mice exhibited an increased expression of anti-inflammatory markers and synthesized less proinflammatory mediators (prostaglandin E2 and IL6). TP expression on platelets was necessary to mediate increased prostaglandin E2 and IL6 synthesis, whereas TP expression on macrophages was sufficient to decrease the expression of the anti-inflammatory macrophage marker CD206, showing that TP activation on platelets and macrophages regulates different aspects of macrophage activation.


Subject(s)
Macrophages/metabolism , Platelet Membrane Glycoproteins/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Skin/pathology , Animals , Blood Platelets/metabolism , Collagen/chemistry , Female , Gene Deletion , Inflammation , Lectins, C-Type/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Receptors, Cell Surface/metabolism , Thromboxane A2/metabolism
13.
Front Mol Neurosci ; 9: 134, 2016.
Article in English | MEDLINE | ID: mdl-27965537

ABSTRACT

The physiological role of amyloid precursor protein (APP) has been extensively investigated in the rodent hippocampus. Evidence suggests that APP plays a role in synaptic plasticity, dendritic and spine morphogenesis, neuroprotection and-at the behavioral level-hippocampus-dependent forms of learning and memory. Intriguingly, however, studies focusing on the role of APP in synaptic plasticity have reported diverging results and considerable differences in effect size between the dentate gyrus (DG) and area CA1 of the mouse hippocampus. We speculated that regional differences in APP expression could underlie these discrepancies and studied the expression of APP in both regions using immunostaining, in situ hybridization (ISH), and laser microdissection (LMD) in combination with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. In sum, our results show that APP is approximately 1.7-fold higher expressed in pyramidal cells of Ammon's horn than in granule cells of the DG. This regional difference in APP expression may explain why loss-of-function approaches using APP-deficient mice revealed a role for APP in Hebbian plasticity in area CA1, whereas this could not be shown in the DG of the same APP mutants.

14.
J Alzheimers Dis ; 49(4): 905-15, 2016.
Article in English | MEDLINE | ID: mdl-26519431

ABSTRACT

In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 µm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their waking and sleeping patterns.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cytoskeleton/metabolism , Thalamus/metabolism , Thalamus/pathology , tau Proteins/metabolism , Humans
15.
Brain Pathol ; 26(3): 371-86, 2016 05.
Article in English | MEDLINE | ID: mdl-26193084

ABSTRACT

Alzheimer's disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia. We systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions in three individuals with Braak and Braak AD stage 0 cortical cytoskeletal pathology and fourteen individuals with Braak and Braak AD stage I cortical cytoskeletal pathology by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive tau cytoskeletal pathology in a subset of these subcortical nuclei in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in Braak and Braak AD stage I shows that the extent of the early subcortical tau cytoskeletal pathology has been considerably underestimated previously. In addition, our novel findings support the concept that subcortical nuclei become already affected during an early 'pre-cortical' evolutional phase before the first AD-related cytoskeletal changes occur in the mediobasal temporal lobe (i.e. allocortical transentorhinal and entorhinal regions). The very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course toward the secondarily affected allocortex and spreads transneuronally along anatomical pathways in predictable sequences.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , tau Proteins , Aged , Cytoskeleton/pathology , Disease Progression , Female , Humans , Male , Middle Aged
16.
J Comp Neurol ; 523(11): 1717-29, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25728909

ABSTRACT

Amyloid precursor-like protein 1 (APLP1) is a transmembrane synaptic protein belonging to the amyloid precursor protein (APP) gene family. Although the role of this gene family-in particular of APP-has been intensely studied in the context of Alzheimer's disease, the physiological roles of its family members remain poorly understood. In particular, the function of APLP1, which is predominantly expressed in the nervous system, has remained enigmatic. Since APP has been implicated in synaptic plasticity, we wondered whether APLP1 could play a similar role. First, using in situ hybridization and laser microdissection combined with reverse transcription-quantitative polymerase chain reaction (PCR) we observed that Aplp1 mRNA is highly expressed in dentate granule cells. Having this examined, we studied synaptic plasticity at the perforant path-granule cell synapses in the dentate gyrus of APLP1-deficient mice in vivo. Analysis of field excitatory postsynaptic potentials evoked by stimulation of perforant path fibers revealed increased excitatory transmission in APLP1-deficient mice. Moreover, we observed decreased paired-pulse inhibition of population spikes indicating a decrease in network inhibition upon deletion of APLP1. In contrast, short-term presynaptic plasticity (STP) as well as long-term synaptic plasticity (LTP) was unchanged in the absence of APLP1. Based on these results we conclude that APLP1 deficiency on its own does not lead to defects in synaptic plasticity, but affects synaptic transmission and network inhibition in the dentate gyrus.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Dentate Gyrus/physiology , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Amyloid beta-Protein Precursor/genetics , Animals , Electric Stimulation , Excitatory Postsynaptic Potentials/physiology , In Situ Hybridization , Male , Mice, Inbred C57BL , Mice, Knockout , Microdissection , Microelectrodes , Neurons/physiology , Perforant Pathway/physiology , Prepulse Inhibition/physiology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
17.
Brain Pathol ; 25(6): 701-11, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25495445

ABSTRACT

Huntington's disease (HD), an autosomal dominantly inherited polyglutamine or CAG repeat disease along with somatomotor, oculomotor, psychiatric and cognitive symptoms, presents clinically with impairments of elementary and complex visual functions as well as altered visual-evoked potentials (VEPs). Previous volumetric and pathoanatomical post-mortem investigations pointed to an involvement of Brodmann's primary visual area 17 (BA17) in HD. Because the involvement of BA17 could be interpreted as an early onset brain neurodegeneration, we further characterized this potential primary cortical site of HD-related neurodegeneration neuropathologically and performed an unbiased estimation of the absolute nerve cell number in thick gallocyanin-stained frontoparallel tissue sections through the striate area of seven control individuals and seven HD patients using Cavalieri's principle for volume and the optical disector for nerve and glial cell density estimations. This investigation showed a reduction of the estimated absolute nerve cell number of BA17 in the HD patients (71,044,037 ± 12,740,515 nerve cells) of 32% in comparison with the control individuals (104,075,067 ± 9,424,491 nerve cells) (Mann-Whitney U-test; P < 0.001). Additional pathoanatomical studies showed that nerve cell loss was most prominent in the outer pyramidal layer III, the inner granular layers IVa and IVc as well as in the multiform layer VI of BA17 of the HD patients. Our neuropathological results in BA17 confirm and extend previous post-mortem, biochemical and in vivo neuroradiological HD findings and offer suitable explanations for the elementary and complex visual dysfunctions, as well as for the altered VEP observed in HD patients.


Subject(s)
Huntington Disease/pathology , Visual Cortex/pathology , Adult , Aged , Cell Count , Female , Humans , Male , Middle Aged , Nerve Degeneration/pathology , Neuroglia/pathology , Neurons/pathology
18.
PLoS Biol ; 12(6): e1001874, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24893313

ABSTRACT

Mechanisms behind how the immune system signals to the brain in response to systemic inflammation are not fully understood. Transgenic mice expressing Cre recombinase specifically in the hematopoietic lineage in a Cre reporter background display recombination and marker gene expression in Purkinje neurons. Here we show that reportergene expression in neurons is caused by intercellular transfer of functional Cre recombinase messenger RNA from immune cells into neurons in the absence of cell fusion. In vitro purified secreted extracellular vesicles (EVs) from blood cells contain Cre mRNA, which induces recombination in neurons when injected into the brain. Although Cre-mediated recombination events in the brain occur very rarely in healthy animals, their number increases considerably in different injury models, particularly under inflammatory conditions, and extend beyond Purkinje neurons to other neuronal populations in cortex, hippocampus, and substantia nigra. Recombined Purkinje neurons differ in their miRNA profile from their nonrecombined counterparts, indicating physiological significance. These observations reveal the existence of a previously unrecognized mechanism to communicate RNA-based signals between the hematopoietic system and various organs, including the brain, in response to inflammation.


Subject(s)
Exosomes/metabolism , Hematopoietic System/metabolism , Inflammation/metabolism , Purkinje Cells/metabolism , RNA, Messenger/metabolism , Animals , Integrases , Mice, Transgenic , Recombination, Genetic
19.
Anesthesiology ; 121(2): 372-82, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24758774

ABSTRACT

BACKGROUND: Phosphodiesterase 2A (PDE2A) is an evolutionarily conserved enzyme that catalyzes the degradation of the cyclic nucleotides, cyclic adenosine monophosphate, and/or cyclic guanosine monophosphate. Recent studies reported the expression of PDE2A in the dorsal horn of the spinal cord, pointing to a potential contribution to the processing of pain. However, the functions of PDE2A in spinal pain processing in vivo remained elusive. METHODS: Immunohistochemistry, laser microdissection, and quantitative real-time reverse transcription polymerase chain reaction experiments were performed to characterize the localization and regulation of PDE2A protein and messenger RNA in the mouse spinal cord. Effects of the selective PDE2A inhibitor, BAY 60-7550 (Cayman Chemical, Ann Arbor, MI), in animal models of inflammatory pain (n = 6 to 10), neuropathic pain (n = 5 to 6), and after intrathecal injection of cyclic nucleotides (n = 6 to 8) were examined. Also, cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in spinal cord tissues were measured by liquid chromatography tandem mass spectrometry. RESULTS: The authors here demonstrate that PDE2A is distinctly expressed in neurons of the superficial dorsal horn of the spinal cord, and that its spinal expression is upregulated in response to hind paw inflammation. Administration of the selective PDE2A inhibitor, BAY 60-7550, increased the nociceptive behavior of mice in animal models of inflammatory pain. Moreover, BAY 60-7550 increased the pain hypersensitivity induced by intrathecal delivery of cyclic adenosine monophosphate, but not of cyclic guanosine monophosphate, and it increased the cyclic adenosine monophosphate levels in spinal cord tissues. CONCLUSION: Our findings indicate that PDE2A contributes to the processing of inflammatory pain in the spinal cord.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/physiology , Inflammation/enzymology , Inflammation/physiopathology , Pain/enzymology , Pain/physiopathology , Spinal Cord/enzymology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/biosynthesis , Drug Hypersensitivity/physiopathology , Imidazoles/administration & dosage , Imidazoles/pharmacology , Immunohistochemistry , Inflammation/complications , Injections, Spinal , Male , Mice , Mice, Inbred C57BL , Microdissection , Neuralgia/enzymology , Neuralgia/physiopathology , Neuralgia/psychology , Pain/etiology , Pain Measurement , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/pharmacology , Posterior Horn Cells/enzymology , Real-Time Polymerase Chain Reaction , Triazines/administration & dosage , Triazines/pharmacology , Up-Regulation/genetics , Up-Regulation/physiology , Zymosan
20.
PLoS One ; 9(1): e84962, 2014.
Article in English | MEDLINE | ID: mdl-24404197

ABSTRACT

The disintegrin and metalloproteinases ADAM10 and ADAM17 are regarded as the most important α-secretases involved in the physiological processing of amyloid precursor protein (APP) in brain. Since it has been suggested that processing of APP by α-secretases could be involved in the reorganization of the brain following injury, we studied mRNA expression of the two α-secretases Adam10 and Adam17, the ß-secretase Bace1, and the App-gene family (App, Aplp1, Aplp2) in the dentate gyrus of the mouse following entorhinal denervation. Using laser microdissection, tissue was harvested from the outer molecular layer and the granule cell layer of the denervated dentate gyrus. Expression levels of candidate genes were assessed using Affymetrix GeneChip Mouse Gene 1.0 ST arrays and reverse transcription-quantitative PCR, revealing an upregulation of Adam10 mRNA and Adam17 mRNA in the denervated outer molecular layer and an upregulation of Adam10 mRNA and App mRNA in the dentate granule cell layer. Immunolabeling for ADAM10 or ADAM17 in combination with markers for astro- and microglia revealed an increased labeling of ADAM10 and ADAM17 in the denervated outer molecular layer that was associated with reactive astrocytes but not with microglia. Collectively, these data show that denervation affects the expression level of APP and its two most important α-secretases. This suggests that APP-processing could be shifted towards the non-amyloidogenic pathway in denervated areas of the brain and, thus, towards the formation of neuroprotective APP cleavage products, such as APPsα.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Denervation , Dentate Gyrus/metabolism , Membrane Proteins/metabolism , ADAM Proteins/genetics , ADAM10 Protein , ADAM17 Protein , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/metabolism , Astrocytes/pathology , Dentate Gyrus/pathology , Dentate Gyrus/surgery , Gene Expression Profiling , Gene Expression Regulation , Male , Membrane Proteins/genetics , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...