Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 601(7893): 415-421, 2022 01.
Article in English | MEDLINE | ID: mdl-34987220

ABSTRACT

Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues1,2. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs3-5. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation. By analysing more than 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioural descriptors of individual cells and used these high-dimensional datasets to build behavioural landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and uncovered a continuum of neutrophil states inside blood vessels, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioural screening in 24 mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and interference with Fgr protected mice from inflammatory injury. Thus, behavioural landscapes report distinct properties of dynamic environments at high cellular resolution.


Subject(s)
Inflammation , Leukocytes , Proteomics , Animals , Cell Shape , Endothelium/immunology , Inflammation/immunology , Leukocytes/immunology , Mice , Neutrophils/immunology , Proto-Oncogene Proteins/immunology , src-Family Kinases/immunology
2.
Nat Commun ; 8: 14780, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28416795

ABSTRACT

The ß1-adrenergic-receptor (ADRB1) antagonist metoprolol reduces infarct size in acute myocardial infarction (AMI) patients. The prevailing view has been that metoprolol acts mainly on cardiomyocytes. Here, we demonstrate that metoprolol reduces reperfusion injury by targeting the haematopoietic compartment. Metoprolol inhibits neutrophil migration in an ADRB1-dependent manner. Metoprolol acts during early phases of neutrophil recruitment by impairing structural and functional rearrangements needed for productive engagement of circulating platelets, resulting in erratic intravascular dynamics and blunted inflammation. Depletion of neutrophils, ablation of Adrb1 in haematopoietic cells, or blockade of PSGL-1, the receptor involved in neutrophil-platelet interactions, fully abrogated metoprolol's infarct-limiting effects. The association between neutrophil count and microvascular obstruction is abolished in metoprolol-treated AMI patients. Metoprolol inhibits neutrophil-platelet interactions in AMI patients by targeting neutrophils. Identification of the relevant role of ADRB1 in haematopoietic cells during acute injury and the protective role upon its modulation offers potential for developing new therapeutic strategies.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Adrenergic beta-1 Receptor Antagonists/therapeutic use , Metoprolol/pharmacology , Metoprolol/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Neutrophils/drug effects , Animals , Cell Movement/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Metoprolol/administration & dosage , Mice , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Neutrophils/cytology , Platelet Aggregation/drug effects , RNA, Messenger/genetics , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...