Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Marrow Transplant ; 56(11): 2697-2704, 2021 11.
Article in English | MEDLINE | ID: mdl-34215854

ABSTRACT

The most frequent complication of allogeneic hematopoietic stem cell transplantation is acute Graft versus Host Disease (aGVHD). Proliferation and differentiation of donor T cells initiate inflammatory response affecting the skin, liver, and gastrointestinal tract. Besides recipient-donor HLA disparities, disease type, and the conditioning regimen, variability in the non-HLA genotype have an impact on aGVHD onset, and genetic variability of key cytokines and chemokines was associated with increased risk of aGVHD. To get further insight into the recipient genetic component of aGVHD grades 2-4 in pediatric patients, we performed an exome-wide association study in a discovery cohort (n = 87). Nine loci sustained correction for multiple testing and were analyzed in a validation group (n = 168). Significant associations were replicated for ERC1 rs1046473, PLEK rs3816281, NOP9 rs2332320 and SPRED1 rs11634702 variants through the interaction with non-genetic factors. The ERC1 variant was significant among patients that received the transplant from HLA-matched related individuals (p = 0.03), bone marrow stem cells recipients (p = 0.007), and serotherapy-negative patients (p = 0.004). NOP9, PLEK, and SPRED1 effects were modulated by stem cell source, and serotherapy (p < 0.05). Furthermore, ERC1 and PLEK SNPs correlated with aGVHD 3-4 independently of non-genetic covariates (p = 0.02 and p = 0.003). This study provides additional insight into the genetic component of moderate to severe aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Acute Disease , Child , Genetic Predisposition to Disease/etiology , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Tissue Donors , Transplantation Conditioning/adverse effects
2.
Biol Blood Marrow Transplant ; 26(5): 920-927, 2020 05.
Article in English | MEDLINE | ID: mdl-31790828

ABSTRACT

Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hepatic Veno-Occlusive Disease , Busulfan/adverse effects , Child , Genetic Predisposition to Disease , Glucuronosyltransferase , Hematopoietic Stem Cell Transplantation/adverse effects , Hepatic Veno-Occlusive Disease/genetics , Humans , Transplantation Conditioning/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...