Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 9: 672959, 2021.
Article in English | MEDLINE | ID: mdl-34760876

ABSTRACT

Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds.

2.
iScience ; 24(6): 102674, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34189438

ABSTRACT

In a multi-level "deconstruction" of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix (ECM) molecules, COL11A1, cartilage oligomeric matrix protein, FN1, versican, cathepsin B, and COL1A1, are upregulated in cancer. Using biopsies, we identified significant associations between TGFßR activity, Hedgehog (Hh) signaling, and these ECM molecules and studied the associations in mono-, co-, and tri-culture. Activated omental fibroblasts (OFs) produced more matrix than malignant cells, directed by TGFßR and Hh signaling cross talk. We "reconstructed" omental metastases in tri-cultures of HGSOC cells, OFs, and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFßR and Hh inhibitor combinations attenuated fibroblast activation and gel and ECM remodeling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.

3.
Cell Rep ; 30(2): 525-540.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940494

ABSTRACT

Although there are many prospective targets in the tumor microenvironment (TME) of high-grade serous ovarian cancer (HGSOC), pre-clinical testing is challenging, especially as there is limited information on the murine TME. Here, we characterize the TME of six orthotopic, transplantable syngeneic murine HGSOC lines established from genetic models and compare these to patient biopsies. We identify significant correlations between the transcriptome, host cell infiltrates, matrisome, vasculature, and tissue modulus of mouse and human TMEs, with several stromal and malignant targets in common. However, each model shows distinct differences and potential vulnerabilities that enabled us to test predictions about response to chemotherapy and an anti-IL-6 antibody. Using machine learning, the transcriptional profiles of the mouse tumors that differed in chemotherapy response are able to classify chemotherapy-sensitive and -refractory patient tumors. These models provide useful pre-clinical tools and may help identify subgroups of HGSOC patients who are most likely to respond to specific therapies.


Subject(s)
Ovarian Neoplasms/genetics , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/pathology
4.
J Tissue Eng Regen Med ; 12(2): 370-381, 2018 02.
Article in English | MEDLINE | ID: mdl-28486747

ABSTRACT

Biodegradable electrospun polycaprolactone scaffolds can be used to support bone-forming cells and could fill a thin bony defect, such as in cleft palate. Oscillatory fluid flow has been shown to stimulate bone production in human progenitor cells in monolayer culture. The aim of this study was to examine whether bone matrix production by primary human mesenchymal stem cells from bone marrow or jaw periosteal tissue could be stimulated using oscillatory fluid flow supplied by a standard see-saw rocker. This was investigated for cells in two-dimensional culture and within electrospun polycaprolactone scaffolds. From day 4 of culture onwards, samples were rocked at 45 cycles/min for 1 h/day, 5 days/week (rocking group). Cell viability, calcium deposition, collagen production, alkaline phosphatase activity and vascular endothelial growth factor secretion were evaluated to assess the ability of the cells to undergo bone differentiation and induce vascularisation. Both cell types produced more mineralized tissue when subjected to rocking and supplemented with dexamethasone. Mesenchymal progenitors and primary human mesenchymal stem cells from bone marrow in three-dimensional scaffolds upregulated mineral deposition after rocking culture as assessed by micro-computed tomography and alizarin red staining. Interestingly, vascular endothelial growth factor secretion, which has previously been shown to be mechanically sensitive, was not altered by rocking in this system and was inhibited by dexamethasone. Rocker culture may be a cost effective, simple pretreatment for bone tissue engineering for small defects such as cleft palate.


Subject(s)
Calcification, Physiologic , Stem Cells/cytology , Stress, Mechanical , Up-Regulation , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Calcification, Physiologic/drug effects , Cells, Cultured , Dexamethasone/pharmacology , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Humans , Jaw/cytology , Mesenchymal Stem Cells/cytology , Minerals/metabolism , Periosteum/cytology , Polyesters/chemistry , Stem Cells/drug effects , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
5.
Cancer Discov ; 8(3): 304-319, 2018 03.
Article in English | MEDLINE | ID: mdl-29196464

ABSTRACT

We have profiled, for the first time, an evolving human metastatic microenvironment by measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, extracellular matrix organization, and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer metastases that ranged from minimal to extensive disease, we show how nonmalignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define, for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, while also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and 12 other primary solid cancers, suggesting that there may be a common matrix response to human cancer.Significance: Conducting multilevel analysis with data integration on biopsies with a range of disease involvement identifies important features of the evolving tumor microenvironment. The data suggest that despite the large spectrum of genomic alterations, some human malignancies may have a common and potentially targetable matrix response that influences the course of disease. Cancer Discov; 8(3); 304-19. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 253.


Subject(s)
Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/pathology , Tumor Microenvironment/physiology , Biomarkers, Tumor/metabolism , Cell Count , Cytokines/metabolism , Extracellular Matrix/genetics , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Prognosis , Tumor Microenvironment/genetics
6.
Sci Rep ; 7(1): 13331, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042656

ABSTRACT

Enhanced image contrast in biological second harmonic imaging microscopy (SHIM) has previously been reported via quantitative assessments of forward- to epi-generated signal intensity ratio and by polarization analysis. Here we demonstrate a new form of contrast: the material-specific, wavelength-dependence of epi-generated second harmonic generation (SHG) excitation efficiency, and discriminate collagen and myosin by ratiometric epi-generated SHG images at 920 nm and 860 nm. Collagen shows increased SHG intensity at 920 nm, while little difference is detected between the two for myosin; allowing SHIM to characterize different SHG-generating components within a complex biological sample. We propose that momentum-space mapping of the second-order non-linear structure factor is the source of this contrast and develop a model for the forward and epi-generated SHG wavelength-dependence. Our model demonstrates that even very small changes in the assumed material fibrillar structure can produce large changes in the wavelength-dependency of epi-generated SHG. However, in the case of forward SHG, although the same changes impact upon absolute intensity at a given wavelength, they have very little effect on wavelength-dependency beyond the expected monotonic fall. We also propose that this difference between forward and epi-generated SHG provides an explanation for many of the wavelength-dependency discrepancies in the published literature.


Subject(s)
Second Harmonic Generation Microscopy/methods , Collagen/metabolism , Dermis/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Image Processing, Computer-Assisted
7.
Dent Mater ; 33(1): 71-83, 2017 01.
Article in English | MEDLINE | ID: mdl-27842886

ABSTRACT

OBJECTIVE: The regeneration of periodontal tissues lost as a consequence of destructive periodontal disease remains a challenge for clinicians. Guided tissue regeneration (GTR) has emerged as the most widely practiced regenerative procedure. Aim of this study was to electrospin chitosan (CH) membranes with a low or high degree of fiber orientation and examines their suitability for use as a surface layer in GTR membranes, which can ease integration with the periodontal tissue by controlling the direction of cell growth. METHODS: A solution of CH-doped with polyethylene oxide (PEO) (ratio 95:5) was prepared for electrospinning. Characterization was performed for biophysiochemical and mechanical properties by means of scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, swelling ratio, tensile testing and monitoring degradation using pH analysis, weight profile, ultraviolet-visible (UV-vis) spectroscopy and FTIR analysis. Obtained fibers were also assessed for viability and matrix deposition using human osteosarcoma (MG63) and human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells. RESULTS: Random and aligned CH fibers were obtained. FTIR analysis showed neat CH spectral profile before and after electrospinning. Electropsun mats were conducive to cellular attachment and viability increased with time. The fibers supported matrix deposition by hES-MPs. Histological sections showed cellular infiltration as well. SIGNIFICANCE: The surface layer would act as seal to prevent junctional epithelium from falling into the defect site and hence maintain space for bone regeneration.


Subject(s)
Bone Regeneration , Chitosan , Guided Tissue Regeneration , Periodontium , Guided Tissue Regeneration, Periodontal , Humans , Male , Membranes, Artificial
8.
Acta Biomater ; 23: 317-328, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25968357

ABSTRACT

Guided tissue regeneration (GTR) membranes have been used for the management of destructive forms of periodontal disease as a means of aiding regeneration of lost supporting tissues, including the alveolar bone, cementum, gingiva and periodontal ligaments (PDL). Currently available GTR membranes are either non-biodegradable, requiring a second surgery for removal, or biodegradable. The mechanical and biofunctional limitations of currently available membranes result in a limited and unpredictable treatment outcome in terms of periodontal tissue regeneration. In this study, porous membranes of chitosan (CH) were fabricated with or without hydroxyapatite (HA) using the simple technique of freeze gelation (FG) via two different solvents systems, acetic acid (ACa) or ascorbic acid (ASa). The aim was to prepare porous membranes to be used for GTR to improve periodontal regeneration. FG membranes were characterized for ultra-structural morphology, physiochemical properties, water uptake, degradation, mechanical properties, and biocompatibility with mature and progenitor osteogenic cells. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of hydroxyapatite and its interaction with chitosan. µCT analysis showed membranes had 85-77% porosity. Mechanical properties and degradation rate were affected by solvent type and the presence of hydroxyapatite. Culture of human osteosarcoma cells (MG63) and human embryonic stem cell-derived mesenchymal progenitors (hES-MPs) showed that all membranes supported cell proliferation and long term matrix deposition was supported by HA incorporated membranes. These CH and HA composite membranes show their potential use for GTR applications in periodontal lesions and in addition FG membranes could be further tuned to achieve characteristics desirable of a GTR membrane for periodontal regeneration.


Subject(s)
Gels/chemistry , Guided Tissue Regeneration, Periodontal/instrumentation , Membranes, Artificial , Osteoblasts/cytology , Stem Cells/cytology , Tissue Scaffolds , Cell Proliferation/physiology , Cells, Cultured , Chitosan/chemistry , Durapatite/chemistry , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Freezing , Guided Tissue Regeneration, Periodontal/methods , Humans , Materials Testing , Osteoblasts/physiology , Osteogenesis/physiology , Porosity , Stem Cells/physiology , Stress, Mechanical , Tensile Strength
9.
PLoS One ; 9(2): e89761, 2014.
Article in English | MEDLINE | ID: mdl-24587017

ABSTRACT

The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.


Subject(s)
Collagen/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cells, Cultured , Humans
10.
FASEB J ; 28(1): 430-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24097311

ABSTRACT

Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.


Subject(s)
Calcium/metabolism , Cilia/metabolism , Cilia/physiology , Osteoblasts/metabolism , Stress, Mechanical , Animals , Cell Line , Mice
11.
Muscles Ligaments Tendons J ; 2(3): 169-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23738294

ABSTRACT

Mesenchymal stem cells (MSCs) have the potential to replace or restore the function of damaged tissues and offer much promise in the successful application of tissue engineering and regenerative medicine strategies. Optimising culture conditions for the pre-differentiation of MSCs is a key goal for the research community, and this has included a number of different approaches, one of which is the use of mechanical stimuli. Mesenchymal tissues are subjected to mechanical stimuli in vivo and terminally differentiated cells from the mesenchymal lineage respond to mechanical stimulation in vivo and in vitro. MSCs have also been shown to be highly mechanosensitive and this may present an ideal method for controlling MSC differentiation. Here we present an overview of the response of MSCs to various mechanical stimuli, focusing on their differentiation towards the mesenchymal tissue lineages including bone, cartilage, tendon/ligament, muscle and adipose tissue. More research is needed to elucidate the complex interactions between biochemically and mechanically stimulated differentiation pathways.

12.
Vitam Horm ; 87: 417-80, 2011.
Article in English | MEDLINE | ID: mdl-22127254

ABSTRACT

Mesenchymal stem cells or stromal cells (MSCs) have the potential to be used therapeutically in tissue engineering and regenerative medicine to replace or restore the function of damaged tissues. Therefore, considerable effort has been ongoing in the research community to optimize culture conditions for predifferentiation of MSCs. All mesenchymal tissues are subjected to mechanical forces in vivo and all fully differentiated mesenchymal lineage cells respond to mechanical stimulation in vivo and in vitro. Therefore, it is not surprising that MSCs are highly mechanosensitive. We present a summary of current methods of mechanical stimulation of MSCs and an overview of the outcomes of the different mechanical culture techniques tested. Tissue engineers and stem cell researchers should be able to harness this mechanosensitivity to modulate MSC differentiation and matrix production; however, more research needs to be undertaken to understand the complex interactions between the mechanosensitive and biochemically stimulated differentiation pathways.


Subject(s)
Cell Differentiation , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Humans , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL
...