Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Chemphyschem ; : e202400419, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945838

ABSTRACT

Scanning probe microscopy (SPM), in particular at low temperature (LT) under ultra-high vacuum (UHV) conditions, offers the possibility of real-space imaging with resolution reaching the atomic level. However, its potential for the analysis of complex biological molecules has been hampered by requirements imposed by sample preparation. Transferring molecules onto surfaces in UHV is typically accomplished by thermal sublimation in vacuum. This approach however is limited by the thermal stability of the molecules, i.e. not possible for biological molecules with low vapour pressure. Bypassing this limitation, electrospray ionisation offers an alternative method to transfer molecules from solution to the gas-phase as intact molecular ions. In soft-landing electrospray ion beam deposition (ESIBD), these molecular ions are subsequently mass-selected and gently landed on surfaces which permits large and thermally fragile molecules to be analyzed by LT-UHV SPM. In this concept, we discuss how ESIBD+SPM prepares samples of complex biological molecules at a surface, offering controls of the molecular structural integrity, three-dimensional shape, and purity. These achievements unlock the analytical potential of SPM which is showcased by imaging proteins, peptides, DNA, glycans, and conjugates of these molecules, revealing details of their connectivity, conformation, and interaction that could not be accessed by any other technique.

2.
J Pept Sci ; 30(8): e3599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38567550

ABSTRACT

Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.


Subject(s)
Glycopeptides , Hydrogels , Polysaccharides , Hydrogels/chemistry , Glycopeptides/chemistry , Polysaccharides/chemistry , Elasticity , Viscosity , Molecular Dynamics Simulation , Rheology
3.
J Am Chem Soc ; 146(9): 6369-6376, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377472

ABSTRACT

Systematic structural studies of model oligopeptides revealed important aspects of protein folding and offered design principles to access non-natural materials. In the same way, the rules that regulate glycan folding could be established by studying synthetic oligosaccharide models. However, their analysis is often limited due to the synthetic and analytical complexity. By utilizing a glycan capable of spontaneously folding into a hairpin conformation as a model system, we investigated the factors that contribute to its conformational stability in aqueous solution. The modular design of the hairpin model featured a trisaccharide turn unit and two ß-1,4-oligoglucoside stacking strands that allowed for systematic chemical modifications of the glycan sequence, including the introduction of NMR labels and staples. Nuclear magnetic resonance assisted by molecular dynamics simulations revealed that stereoelectronic effects and multiple glycan-glycan interactions are the major determinants of folding stabilization. Chemical modifications in the glycan primary sequence (e.g., strand elongation) can be employed to fine-tune the rigidity of structural motifs distant from the modification sites. These results could inspire the design of other glycan architectures, with implications in glycobiology and material sciences.


Subject(s)
Oligopeptides , Protein Folding , Amino Acid Sequence , Molecular Conformation , Oligopeptides/chemistry , Polysaccharides
4.
ACS Cent Sci ; 10(1): 138-142, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38292611

ABSTRACT

In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.

6.
Angew Chem Int Ed Engl ; 62(47): e202310357, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37823670

ABSTRACT

Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.


Subject(s)
Cellulose , Oligosaccharides , Cellulose/chemistry , Oligosaccharides/chemistry , Peptides/chemistry , Hydrogels/chemistry
7.
Angew Chem Int Ed Engl ; 62(39): e202305733, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37522820

ABSTRACT

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

8.
Nat Chem ; 15(10): 1461-1469, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37400598

ABSTRACT

The primary sequence of a biopolymer encodes the essential information for folding, permitting to carry out sophisticated functions. Inspired by natural biopolymers, peptide and nucleic acid sequences have been designed to adopt particular three-dimensional (3D) shapes and programmed to exert specific functions. In contrast, synthetic glycans capable of autonomously folding into defined 3D conformations have so far not been explored owing to their structural complexity and lack of design rules. Here we generate a glycan that adopts a stable secondary structure not present in nature, a glycan hairpin, by combining natural glycan motifs, stabilized by a non-conventional hydrogen bond and hydrophobic interactions. Automated glycan assembly enabled rapid access to synthetic analogues, including site-specific 13C-labelled ones, for nuclear magnetic resonance conformational analysis. Long-range inter-residue nuclear Overhauser effects unequivocally confirmed the folded conformation of the synthetic glycan hairpin. The capacity to control the 3D shape across the pool of available monosaccharides has the potential to afford more foldamer scaffolds with programmable properties and functions.

9.
Beilstein J Org Chem ; 19: 1015-1020, 2023.
Article in English | MEDLINE | ID: mdl-37440787

ABSTRACT

Automated glycan assembly (AGA) affords collections of well-defined glycans in a short amount of time. We systematically analyzed how parameters connected to the solid support affect the AGA outcome for three different glycan sequences. We showed that, while loading and reaction scale did not significantly influence the AGA outcome, the chemical nature of the linker dramatically altered the isolated yields. We identified that the major determinants of AGA yields are cleavage from the solid support and post-AGA purification steps.

11.
Org Biomol Chem ; 20(42): 8228-8235, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36254595

ABSTRACT

Cellulose and chitin are abundant structural polysaccharides exploited by nature in a large number of applications thanks to their crystallinity. Chemical modifications are commonly employed to tune polysaccharide physical and mechanical properties, but generate heterogeneous mixtures. Thus, the effect of such modifications is not well understood at the molecular level. In this work, we examined how deoxyfluorination (site and pattern) impact the solubility and aggregation of well-defined cellulose and chitin oligomers. While deoxyfluorination increased solubility in water and lowered the crystallinity of cellulose oligomers, chitin was much less affected by the modification. The OH/F substitution also highlighted the role of specific hydroxyl groups in the crystallization process. This work provides guidelines for the design of cellulose- and chitin-based materials. A similar approach can be imagined to prepare cellulose and chitin analogues capable of withstanding enzymatic degradation.


Subject(s)
Cellulose , Chitin , Chitin/chemistry , Crystallization , Oligosaccharides/chemistry , Polysaccharides/chemistry
12.
J Am Chem Soc ; 144(40): 18429-18434, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36173281

ABSTRACT

Stapling short peptides to lock specific conformations and thereby obtain superior pharmacological properties is well established. However, similar concepts have not been applied to oligosaccharides. Here, we describe the design, synthesis, and characterization of the first stapled oligosaccharides. Automated assembly of ß-(1,6)-glucans equipped with two alkenyl side chains was followed by on-resin Grubbs metathesis for efficient ring closure with a variety of cross-linkers of different sizes. Oligosaccharide stapling increases enzymatic stability and cell penetration, therefore opening new opportunities for the use of glycans in medicinal chemistry.


Subject(s)
Oligosaccharides , Peptides , Glucans/chemistry , Molecular Conformation , Oligosaccharides/chemistry , Peptides/chemistry , Polysaccharides
13.
Chem Sci ; 13(34): 9806-9810, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128242

ABSTRACT

In May 2022, the 55th Bürgenstock Conference on Stereochemistry happened in person once again. This summary provides insight into the scientific themes discussed during the most recent meeting of this historic and multi-disciplinary conference.

14.
European J Org Chem ; 2022(15): e202200255, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35915640

ABSTRACT

Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the ß-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.

15.
Chembiochem ; 23(24): e202200416, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36005282

ABSTRACT

NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.


Subject(s)
Lanthanoid Series Elements , Polysaccharides , Polysaccharides/chemistry , Magnetic Resonance Spectroscopy/methods , Proteins
16.
Nat Commun ; 13(1): 3954, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35804023

ABSTRACT

Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.


Subject(s)
Biofilms , Escherichia coli , Cellulose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanolamines , Oligosaccharides/metabolism
17.
J Am Chem Soc ; 144(27): 12469-12475, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35765970

ABSTRACT

Cellulose is a polysaccharide that displays chirality across different scales, from the molecular to the supramolecular level. This feature has been exploited to generate chiral materials. To date, the mechanism of chirality transfer from the molecular level to higher-order assemblies has remained elusive, partially due to the heterogeneity of cellulose samples obtained via top-down approaches. Here, we present a bottom-up approach that uses well-defined cellulose oligomers as tools to understand the transfer of chirality from the single oligomer to supramolecular assemblies beyond the single cellulose crystal. Synthetic cellulose oligomers with defined sequences self-assembled into thin micrometer-sized platelets with controllable thicknesses. These platelets further assembled into bundles displaying intrinsic chiral features, directly correlated to the monosaccharide chirality. Altering the stereochemistry of the oligomer termini impacted the chirality of the self-assembled bundles and thus allowed for the manipulation of the cellulose assemblies at the molecular level. The molecular description of cellulose assemblies and their chirality will improve our ability to control and tune cellulose materials. The bottom-up approach could be expanded to other polysaccharides whose supramolecular chirality is less understood.


Subject(s)
Cellulose , Cellulose/chemistry , Stereoisomerism
18.
Chem Sci ; 13(7): 2115-2120, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35308866

ABSTRACT

Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.

19.
Faraday Discuss ; 234(0): 159-174, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35147141

ABSTRACT

The relative sensitivities of structurally related Eu(III) complexes to quenching by electron and energy transfer processes have been compared. In two sets of 9-coordinate complexes based on 1,4,7-triazacyclononane, the Eu emission lifetime decreased as the number of conjugated sensitising groups and the number of unbound ligand N atoms increased, consistent with photoinduced electron transfer to the excited Eu(III) ion that is suppressed by N-protonation. Quenching of the Eu 5D0 excited state may also occur by electronic energy transfer, and the quenching of a variety of 9-coordinate complexes by a cyanine dye with optimal spectral overlap occurs by an efficient FRET process, defined by a Förster radius (R0) value of 68 Å and characterised by second rate constants in the order of 109 M-1 s-1; these values were insensitive to changes in the ligand structure and to the overall complex hydrophilicity. Quenching of the Eu and Tb excited states by energy transfer to Mn(II) and Cu(II) aqua ions occurred over much shorter distances, with rate constants of around 106 M-1 s-1, owing to the much lower spectral overlap integral. The calculated R0 values were estimated to be between 2.5 to 4 Å in the former case, suggesting the presence of a Dexter energy transfer mechanism that requires much closer contact, consistent with the enhanced sensitivity of the rate of quenching to the degree of steric shielding of the lanthanide ion provided by the ligand.

20.
Front Mol Biosci ; 8: 784318, 2021.
Article in English | MEDLINE | ID: mdl-34859057

ABSTRACT

The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a ß(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...