Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35124727

ABSTRACT

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Subject(s)
Mycobiome , Trees , Trees/microbiology , Fungi , Plant Leaves/microbiology
2.
BMC Ecol ; 18(1): 58, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558598

ABSTRACT

BACKGROUND: Land use changes and related land management practices significantly alter soil physicochemical properties; however, their effects on the soil microbial community structure are still unclear. In this study, we used automated ribosomal intergenic spacer analysis to determine the fungal and bacterial community composition in soils from different land use areas in the Ethiopian highlands. Soil samples were collected from five areas with different land uses, natural forest, eucalyptus plantation, exclosure, grassland and cropland, which had all historically been natural forest. RESULTS: Our results showed a significant shift in the soil bacterial and fungal community composition in response to land use change. We also identified soil physicochemical factors corresponding to the changes in bacterial and fungal communities. Although most soil attributes, including soil organic carbon, total soil nitrogen, labile P, soil pH and soil aggregate stability, were related to the change in bacterial community composition, the total soil nitrogen and soil organic carbon had the strongest relationships. The change in fungal community composition was correlated with soil nutrients, organic carbon, soil nitrogen and particularly the labile P concentration. CONCLUSIONS: The fungal community composition was likely affected by the alteration of vegetation cover in response to land use change, whereas the bacterial communities were mainly sensitive to changes in soil attributes. The study highlights the higher sensitivity of fungal communities than bacterial communities to land use changes.


Subject(s)
Farms , Forests , Microbiota , Soil Microbiology , Agriculture , Bacteria/classification , Ethiopia , Fungi/classification
3.
Sci Rep ; 7(1): 13602, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051610

ABSTRACT

Land use change alters biodiversity and soil quality and thus affects ecosystem functions. This study investigated the effects of changes in land use on major soil quality indicators. Soil samples were taken from a depth of 0-10 cm (top soil) under four major land uses (cropland, grassland, area exclosure, eucalyptus plantation) with similar land use change histories for analysis, and soil from a nearby natural forest was used as a reference. Land use change from natural forest to cropland and grassland significantly decreased major soil quality indicators such as soil organic C (SOC), total soil N (TSN), molybdate-reactive bicarbonate-extractable P, and arbuscular mycorrhizal fungi (AMF) spore density, but compared to the cropland, change to area exclosure and eucalyptus plantation significantly improved SOC, TSN and soil aggregate stability (SAS). In addition, we assessed the correlation among indicators and found that SOC, TSN and SAS significantly correlate with many other soil quality indicators. The study highlights that the conversion of natural forest to cropland results in decline of soil quality and aggregate stability. However, compared to cropland, application of area exclosure and afforestation on degraded lands restores soil quality and aggregate stability.

SELECTION OF CITATIONS
SEARCH DETAIL