Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
2.
Foods ; 11(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36429317

ABSTRACT

Food production from agriculture depends on irrigation, mainly in poor rainfall zones, such as the Mediterranean region. Chicory is an important food crop component of the Mediterranean diet. Considering the increasing incidence of drought due to climate change, this study was carried out in order to investigate the effect of moderate drought stress on photosynthesis, leaf gaseous exchange, growth, and tocol and carotenoid composition of chicory under field conditions. Chicory was subjected to rainfed condition stress in a randomized block design. At 50 days of treatment, drought stress caused about 48% reduction in dry matter, 30% in leaf relative water content, and about 25% in photosynthetic rate and stomatal conductance, whereas mesophyll conductance was not affected. A strong relationship between photosynthetic rates and stomatal conductance was observed. In the rainfed chicory, at the end of treatment, an increase (about 20%) in carotenoid and tocopherol content was found, thus, giving further insight into the positive effect of moderate drought stress on these compounds. This finding suggests that under proper rainfed conditions, it is possible to increase and save the quality of dry chicory, although yield loss occurs.

3.
Biomed Pharmacother ; 118: 109281, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31377469

ABSTRACT

In 2018 there were over 1.8 million new cases worldwide of colorectal cancer and relapses after clinical treatments. Many studies ascribe the risk of the appearance of this cancer to the Western life style : a sedentary life, obesity, and low -fiber, high -fat diets can promote the onset of disease. Several studies have shown supplement phytochemicals to have an inhibiting effect on the growth of various cancers through the activation of apoptosis. Our goal was to prove the effectiveness of a natural compound in the combined therapy of colorectal cancer. Trigno M supplement was an optimal candidate as anticancer product for its high concentrations of phenolic acids, flavonoids and anthocyanins. Our work showed the antitumor activity of Trigno M, extract of Prunus spinosa drupes combined with the nutraceutical activator complex (NAC), in 2D, 3D and in vivo colorectal cancer models. The cellular model we used both in vitro and in vivo was the HCT116 cell line, particularly suitable for engraftment after inoculation in mice. Trigno M inhibited the growth and colony formation of HCT116 cells (35%) as compared to the chemotherapy treatment with 5-fluorouracil (80%) used in clinical therapy. The reduction of the morphological dimensions in the spheroid cells after Trigno M, was compared with 5-fluorouracil demonstrating the efficacy of the Trigno M compound also in 3D models. Flow cytometric analysis on 3D cells showed a significant increase in the apoptotic cell fraction after Trigno M treatment (44.8%) and a low level of necrotic fraction (6.7%) as compared with control cells. Trigno M and 5-fluorouracil induced the apoptosis in a comparable percentage. Monotherapy with Trigno M in severely immunodeficient mice, carrying colon rectal cancer xenografts, significantly reduced tumor growth. The histopatological analysis of the ectopic tumors showed a lower level of necrosis after Trigno M treatment compared with the control. We conclude that Trigno M is well tolerated by mice, delays colorectal cancer growth in these animals and should be weighed up for integration of the current multi-drug protocols in the treatment of colon carcinoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Models, Biological , Plant Extracts/therapeutic use , Prunus/chemistry , Acetylcysteine/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/ultrastructure , Female , Fluorouracil/pharmacology , HCT116 Cells , Humans , Mice, SCID , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
4.
Molecules ; 22(9)2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28930188

ABSTRACT

The aim of this work was to demonstrate that a natural compound, not-toxic to normal cells, has cytotoxic and sensitizing effects on carcinoma cells, with the final goal of combining it with chemotherapeutic drugs to reduce the overall dose. Prunus spinosa Trigno ecotype (PsT) drupe extract with a nutraceutical activator complex (NAC) made of amino acids, vitamins and mineral salt blends, has shown in vitro anticancer activity. The cytotoxic effect of (PsT + NAC)® has been evaluated on human cancer cells, with an initial screening with colorectal, uterine cervical, and bronchoalveolar cells, and a subsequent focus on colon carcinoma cells HCT116 and SW480. The viability reduction of HCT116 and SW480 after treatment with (PsT 10 mg/mL + NAC)® was about 40% (p < 0.05), compared to control cells. The cell's survival reduction was ineffective when the drug vehicle (NAC) was replaced with a phosphate buffer saline (PBS) or physiological solution (PS). The flow cytometry evaluation of cancer cells' mitochondrial membrane potential showed an increase of 20% depolarized mitochondria. Cell cycle analysis showed a sub G1 (Gap 1 phase) peak appearance (HCT116: 35.1%; SW480: 11.6%), indicating apoptotic cell death induction that was confirmed by Annexin V assay (HCT116: 86%; SW480: 96%). Normal cells were not altered by (PsT + NAC)® treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Plant Extracts/pharmacology , Prunus/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , G1 Phase/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/chemistry
5.
J Plant Physiol ; 182: 40-8, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26047071

ABSTRACT

Pollution by toxic metals, accumulating into soils as result of human activities, is a worldwide major concern in industrial countries. Plants exhibit different degrees of tolerance to heavy metals, as a consequence of their ability to exclude or accumulate them in particular tissues, organs or sub-cellular compartments. Molecular information about cellular processes affected by heavy metals is still largely incomplete. As a fast-growing, highly tolerant perennial plant species, poplar has become a model for environmental stress response investigations. To study the short-term effects of cadmium accumulation in leaves, we analyzed photosystem II (PSII) quantum yield, hydrogen peroxide (H2O2) generation, hormone levels variation, as well as proteome profile alteration of 50µM CdSO4 vacuum-infiltrated poplar (Populus nigra L.) detached leaves. Cadmium management brought about an early and sustained production of hydrogen peroxide, an increase of abscisic acid, ethylene and gibberellins content, as well as a decrease in cytokinins and auxin levels, whereas photosynthetic electron transport was unaffected. Proteomic analysis revealed that twenty-one proteins were differentially induced in cadmium-treated leaves. Identification of fifteen polypeptides allowed to ascertain that most of them were involved in stress response while the remaining ones were involved in photosynthetic carbon metabolism and energy production.


Subject(s)
Cadmium/metabolism , Populus/physiology , Stress, Physiological , Abscisic Acid/metabolism , Cytokinins/metabolism , Electron Transport/drug effects , Ethylenes/metabolism , Gibberellins/metabolism , Hydrogen Peroxide/metabolism , Indoleacetic Acids/metabolism , Photosystem II Protein Complex/metabolism , Plant Growth Regulators/metabolism , Populus/drug effects , Populus/metabolism , Proteome
6.
Food Chem Toxicol ; 55: 42-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23291326

ABSTRACT

Salvia officinalis L. can be found worldwide and its leaves are commonly used as ingredient in food industry. Sage essential oil is applied in the treatment of a range of diseases and has been shown to possess different biological activities. The objectives of our research were to study the effects of environment on crop, chemical composition and anticancer activity on S. officinalis essential oil. Sage was cultivated at eighteen experimental sites in south-central Italy (Molise) in different growing environments. The essential oils (S1-S18), extracted by hydrodistillation, were analyzed by GC and CG/MS. Results show that the main components were α-thujone, camphor, borneol, γ-muurolene and sclareol for all the samples, but the percentages of these compounds varied depending on environmental factors such as altitude, water availability and pedo-climatic conditions. The growth-inhibitory and proapoptotic effects of the eighteen sage essential oils were evaluated in three human melanoma cell lines, A375, M14, and A2058.


Subject(s)
Antineoplastic Agents/chemistry , Oils, Volatile/analysis , Salvia officinalis/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chromatography, Gas , Humans , Mass Spectrometry , Oils, Volatile/pharmacology
7.
New Phytol ; 158(3): 455-463, 2003 Jun.
Article in English | MEDLINE | ID: mdl-36056506

ABSTRACT

• The aim of the paper was to determine nitrogen compounds contributing to leaf cell osmoregulation of spinach (Spinacia oleracea) submitted to increasing salt stress. • Sodium, free amino acids and glycine betaine contents were determined in the last fully expanded leaf of plants stressed by daily irrigation with saline water (0.17 M NaCl). • After 20 d of treatment, when Na+ content was c. 55 umol g-1 f. wt above the control, and the reduction of stomatal conductance lowered photosynthesis to c. 60% of the control, the free amino acids of the leaves, especially glycine and serine, strongly increased. Proline and glycine betaine also increased significantly. After 27 d of treatment, when the Na+ content was c. 100 umol g-1 f. wt above the control and photosynthesis was 33% of the control, the free amino acid content, especially glycine and serine, declined. Gycine betaine, but not proline, increased further. • Glycine betaine comprised c. 15% of the overall nitrogen osmolytes at mild salt-stress, but represented 55% of the total, when the stress became more severe. The increase of glycine betaine balanced the decline in free amino acids, mainly replacing glycine and serine (the precursors of glycine betaine) in the osmotic adjustment of the cells. Photorespiration, which increased during salt stress, was also suggested to have a role in supplying metabolites to produce compatible osmolytes.

SELECTION OF CITATIONS
SEARCH DETAIL