Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Res Sq ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38558984

ABSTRACT

Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.

2.
Curr Osteoporos Rep ; 22(2): 266-272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457001

ABSTRACT

PURPOSE OF REVIEW: To describe the contributions of osteocytes to the lesions in Paget's disease, which are characterized by locally overactive bone resorption and formation. RECENT FINDINGS: Osteocytes, the most abundant cells in bone, are altered in Paget's disease lesions, displaying increased size, decreased canalicular length, incomplete differentiation, and less sclerostin expression compared to controls in both patients and mouse models. Pagetic lesions show increased senescent osteocytes that express RANK ligand, which drives osteoclastic bone resorption. Abnormal osteoclasts in Paget's disease secrete abundant IGF1, which enhances osteocyte senescence, contributing to lesion formation. Recent data suggest that osteocytes contribute to lesion formation in Paget's disease by responding to high local IGF1 released from abnormal osteoclasts. Here we describe the characteristics of osteocytes in Paget's disease and their role in bone lesion formation based on recent results with mouse models and supported by patient data.


Subject(s)
Osteitis Deformans , Osteoclasts , Osteocytes , Osteitis Deformans/metabolism , Osteitis Deformans/pathology , Osteocytes/metabolism , Osteocytes/pathology , Humans , Animals , Osteoclasts/metabolism , RANK Ligand/metabolism , Bone Resorption/metabolism , Mice , Insulin-Like Growth Factor I/metabolism , Disease Models, Animal , Cellular Senescence
3.
Haematologica ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385272

ABSTRACT

Multiple myeloma (MM) remains incurable due to disease relapse and drug resistance. Notch signals from the tumor microenvironment (TME) confer chemoresistance, but the cellular and molecular mechanisms are not entirely understood. Using clinical and transcriptomic datasets, we found that NOTCH3 is upregulated in CD138+ cells from newly diagnosed MM (NDMM) patients compared to healthy individuals and increased in progression/relapsed MM (PRMM) patients. Further, NDMM patients with high NOTCH3 expression exhibited worse responses to Bortezomib (BOR)-based therapies. Cells of the TME, including osteocytes, upregulated NOTCH3 in MM cells and protected them from apoptosis induced by BOR. NOTCH3 activation (NOTCH3OE) in MM cells decreased BOR anti-MM efficacy and its ability to improve survival in in vivo myeloma models. Molecular analyses revealed that NDMM and PRMM patients with high NOTCH3 exhibit CXCL12 upregulation. TME cells upregulated CXCL12 and activated the CXCR4 pathway in MM cells in a NOTCH3-dependent manner. Moreover, genetic or pharmacologic inhibition of CXCL12 in NOTCH3OE MM cells restored sensitivity to BOR regimes in vitro and in human bones bearing NOTCH3OE MM tumors cultured ex vivo. Our clinical and preclinical data unravel a novel NOTCH3-CXCL12 pro-survival signaling axis in the TME and suggest that osteocytes transmit chemoresistance signals to MM cells.

4.
Haematologica ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37981834

ABSTRACT

Multiple myeloma (MM) is a malignancy of plasma cells whose antibody secretion creates proteotoxic stress relieved by the N-end rule pathway, a proteolytic system that degrades Narginylated proteins in the proteasome. When the proteasome is inhibited, protein cargo is alternatively targeted for autophagic degradation by binding to the ZZ-domain of p62/sequestosome-1. Here, we demonstrate that XRK3F2, a selective ligand for the ZZ-domain, dramatically improved two major responses to the proteasome inhibitor bortezomib by increasing: 1) killing of human MM cells by stimulating both bortezomib mediated apoptosis and necroptosis, a process regulated by p62; and 2) preservation of bone mass by stimulating osteoblasts differentiation and inhibiting osteoclastic bone destruction. Co-administration of bortezomib and XRK3F2 inhibited both branches of the bimodal N-end rule pathway exhibited synergistic anti-MM effects on MM cell lines and CD138+ cells from MM patients, and prevented stromal-mediated MM cell survival. In mice with established human MM, coadministration of bortezomib and XRK3F2 decreased tumor burden and prevented the progression of MM-induced osteolytic disease by inducing new bone formation more effectively than either single agent alone. The results suggest that p62-ZZ ligands enhance the anti-MM efficacy of proteasome inhibitors and can reduce MM morbidity and mortality by improving bone health.

5.
Int J Mol Sci ; 24(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37569774

ABSTRACT

The evidence sustaining the regenerative properties of mesenchymal stem cells' (MSCs) secretome has prompted a paradigm change, where MSCs have shifted from being considered direct contributors to tissue regeneration toward being seen as cell factories for producing biotech medicines. We have previously designed a method to prime MSCs towards osteogenic differentiation by silencing the Wnt/ß-Catenin inhibitor Sfpr1. This approach produces a significant increase in bone formation in osteoporotic mice. In this current work, we set to investigate the contribution of the secretome from the MSCs where Sfrp1 has been silenced, to the positive effect seen on bone regeneration in vivo. The conditioned media (CM) of the murine MSCs line C3H10T1/2, where Sfrp1 has been transiently silenced (CM-Sfrp1), was found to induce, in vitro, an increase in the osteogenic differentiation of this same cell line, as well as a decrease of the expression of the Wnt inhibitor Dkk1 in murine osteocytes ex vivo. A reduction in the RANKL/OPG ratio was also detected ex vivo, suggesting a negative effect of CM-Sfrp1 on osteoclastogenesis. Moreover, this CM significantly increases the mineralization of human primary MSCs isolated from osteoportotic patients in vitro. Proteomic analysis identified enrichment of proteins involved in osteogenesis within the soluble and vesicular fractions of this secretome. Altogether, we demonstrate the pro-osteogenic potential of the secretome of MSCs primmed in this fashion, suggesting that this is a valid approach to enhance the osteo-regenerative properties of MSCs' secretome.


Subject(s)
Osteogenesis , Proteomics , Humans , Animals , Mice , Osteogenesis/genetics , Secretome , Intracellular Signaling Peptides and Proteins/pharmacology , Cell Differentiation/genetics
7.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37338990

ABSTRACT

We previously reported that measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) of patients with Paget disease (PD) or targeted to the OCL lineage in MVNP-transgenic mice (MVNP mice) increases IGF1 production in osteoclasts (OCL-IGF1) and leads to development of PD OCLs and pagetic bone lesions (PDLs). Conditional deletion of Igf1 in OCLs of MVNP mice fully blocked development of PDLs. In this study, we examined whether osteocytes (OCys), key regulators of normal bone remodeling, contribute to PD. OCys in PDLs of patients and of MVNP mice expressed less sclerostin, and had increased RANKL expression compared with OCys in bones from WT mice or normal patients. To test whether increased OCL-IGF1 is sufficient to induce PDLs and PD phenotypes, we generated TRAP-Igf1 (T-Igf1) transgenic mice to determine whether increased IGF1 expression in the absence of MVNP in OCLs is sufficient to induce PDLs and pagetic OCLs. We found that T-Igf1 mice at 16 months of age developed PD OCLs, PDLs, and OCys, with decreased sclerostin and increased RANKL, similar to MVNP mice. Thus, pagetic phenotypes could be induced by OCLs expressing increased IGF1. OCL-IGF1 in turn increased RANKL production in OCys to induce PD OCLs and PDLs.


Subject(s)
Osteitis Deformans , Osteoclasts , Animals , Mice , Bone and Bones/metabolism , Gene Expression , Mice, Transgenic , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Osteocytes/metabolism
8.
Cancers (Basel) ; 15(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37174109

ABSTRACT

The tumor microenvironment plays a central role in the onset and progression of cancer in the bone. Cancer cells, either from tumors originating in the bone or from metastatic cancer cells from other body systems, are located in specialized niches where they interact with different cells of the bone marrow. These interactions transform the bone into an ideal niche for cancer cell migration, proliferation, and survival and cause an imbalance in bone homeostasis that severely affects the integrity of the skeleton. During the last decade, preclinical studies have identified new cellular mechanisms responsible for the dependency between cancer cells and bone cells. In this review, we focus on osteocytes, long-lived cells residing in the mineral matrix that have recently been identified as key players in the spread of cancer in bone. We highlight the most recent discoveries on how osteocytes support tumor growth and promote bone disease. Additionally, we discuss how the reciprocal crosstalk between osteocytes and cancer cells provides the opportunity to develop new therapeutic strategies to treat cancer in the bone.

10.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36198068

ABSTRACT

Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.


Subject(s)
DNA, Circular , Genome , DNA, Circular/genetics , DNA/genetics , Eukaryotic Cells
11.
Neoplasia ; 28: 100785, 2022 06.
Article in English | MEDLINE | ID: mdl-35390742

ABSTRACT

In multiple myeloma (MM), communication via Notch signaling in the tumor niche stimulates tumor progression and bone destruction. We previously showed that osteocytes activate Notch, increase Notch3 expression, and stimulate proliferation in MM cells. We show here that Notch3 inhibition in MM cells reduced MM proliferation, decreased Rankl expression, and abrogated the ability of MM cells to promote osteoclastogenesis. Further, Notch3 inhibition in MM cells partially prevented the Notch activation and increased proliferation induced by osteocytes, demonstrating that Notch3 mediates MM-osteocyte communication. Consistently, pro-proliferative and pro-osteoclastogenic pathways were upregulated in CD138+ cells from newly diagnosed MM patients with high vs. low NOTCH3 expression. These results show that NOTCH3 signaling in MM cells stimulates proliferation and increases their osteoclastogenic potential. In contrast, Notch2 inhibition did not alter MM cell proliferation or communication with osteocytes. Lastly, mice injected with Notch3 knock-down MM cells had a 50% decrease in tumor burden and a 50% reduction in osteolytic lesions than mice bearing control MM cells. Together, these findings identify Notch3 as a mediator of cell communication among MM cells and between MM cells and osteocytes in the MM tumor niche and warrant future studies to exploit Notch3 as a therapeutic target to treat MM.


Subject(s)
Cell Communication , Multiple Myeloma , Osteocytes , Osteolysis , Receptor, Notch3 , Animals , Humans , Mice , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Osteocytes/metabolism , Osteocytes/pathology , Osteogenesis , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Signal Transduction
12.
FASEB J ; 36(3): e22196, 2022 03.
Article in English | MEDLINE | ID: mdl-35137455

ABSTRACT

Parathyroid hormone (PTH) signaling downstream of the PTH 1 receptor (Pth1r) results in both bone anabolic and catabolic actions by mechanisms not yet fully understood. In this study, we show that Pth1r signaling upregulates the expression of several components of the Notch pathway and that Notch signals contribute to the catabolic actions of PTH in bone. We found that constitutive genetic activation of PTH receptor signaling in osteocytes (caPth1rOt ) or treatment with PTH daily increased the expression of several Notch ligands/receptors in bone. In contrast, sustained elevation of endogenous PTH did not change Notch components expression. Deletion of the PTH receptor or sclerostin overexpression in osteocytes abolished Notch increases by PTH. Further, deleting the canonical Notch transcription factor Rbpjk in osteocytes decreased bone mass and increased resorption and Rankl expression in caPth1rOt mice. Moreover, pharmacological bone-targeted Notch inhibition potentiated the bone mass gain induced by intermittent PTH by reducing bone resorption and preserving bone formation. Thus, Notch activation lies downstream of anabolic signaling driven by PTH actions in osteocytes, and Notch pharmacological inhibition maximizes the bone anabolic effects of PTH.


Subject(s)
Bone Resorption/metabolism , Osteogenesis , Parathyroid Hormone/metabolism , Receptors, Notch/metabolism , Animals , Bone Resorption/genetics , Female , Mice , Mice, Inbred C57BL , Osteocytes/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptors, Notch/genetics , Signal Transduction
13.
Physiol Rev ; 102(1): 379-410, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34337974

ABSTRACT

Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.


Subject(s)
Bone Remodeling/physiology , Osteoclasts/cytology , Osteocytes/cytology , Osteogenesis/physiology , Animals , Bone Resorption/metabolism , Cell Differentiation/physiology , Humans
14.
Article in English | MEDLINE | ID: mdl-34778567

ABSTRACT

Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.

15.
Cancer Res ; 81(19): 5102-5114, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34348968

ABSTRACT

Systemic inhibition of Notch with γ-secretase inhibitors (GSI) decreases multiple myeloma tumor growth, but the clinical use of GSI is limited due to its severe gastrointestinal toxicity. In this study, we generated a GSI Notch inhibitor specifically directed to the bone (BT-GSI). BT-GSI administration decreased Notch target gene expression in the bone marrow, but it did not alter Notch signaling in intestinal tissue or induce gut toxicity. In mice with established human or murine multiple myeloma, treatment with BT-GSI decreased tumor burden and prevented the progression of multiple myeloma-induced osteolytic disease by inhibiting bone resorption more effectively than unconjugated GSI at equimolar doses. These findings show that BT-GSI has dual anti-myeloma and anti-resorptive properties, supporting the therapeutic approach of bone-targeted Notch inhibition for the treatment of multiple myeloma and associated bone disease. SIGNIFICANCE: Development of a bone-targeted Notch inhibitor reduces multiple myeloma growth and mitigates cancer-induced bone destruction without inducing the gastrointestinal toxicity typically associated with inhibition of Notch.


Subject(s)
Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone and Bones/metabolism , Bone and Bones/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Receptors, Notch/antagonists & inhibitors , Animals , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacology , Cell Line, Tumor , Clodronic Acid/analogs & derivatives , Clodronic Acid/chemistry , Clodronic Acid/pharmacology , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Humans , Mice , Multiple Myeloma/etiology , Osteolysis , Signal Transduction/drug effects , X-Ray Microtomography , Xenograft Model Antitumor Assays
16.
Curr Osteoporos Rep ; 19(3): 247-255, 2021 06.
Article in English | MEDLINE | ID: mdl-33818732

ABSTRACT

PURPOSE OF REVIEW: The goal of this manuscript is to review the current knowledge on the role of osteocytes in cancer in the bone, discuss the potential of osteocytes as a therapeutic target, and propose future research needed to understand the crosstalk between cancer cells and osteocytes in the tumor niche. RECENT FINDINGS: Numerous studies have established that cancer cells manipulate osteocytes to facilitate invasion and tumor progression in bone. Moreover, cancer cells dysregulate osteocyte function to disrupt physiological bone remodeling, leading to the development of bone disease. Targeting osteocytes and their derived factors has proven to effectively interfere with the progression of cancer in the bone and the associated bone disease. Osteocytes communicate with cancer cells and are also part of the vicious cycle of cancer in the bone. Additional studies investigating the role of osteocytes on metastases to the bone and the development of drug resistance are needed.


Subject(s)
Bone Diseases/pathology , Osteocytes/pathology , Animals , Bone Remodeling , Disease Progression , Humans , Neoplasm Invasiveness/pathology , Signal Transduction
17.
Sci Rep ; 10(1): 17319, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057033

ABSTRACT

Multiple Myeloma (MM) induces bone destruction, decreases bone formation, and increases marrow angiogenesis in patients. We reported that osteocytes (Ocys) directly interact with MM cells to increase tumor growth and expression of Ocy-derived factors that promote bone resorption and suppress bone formation. However, the contribution of Ocys to enhanced marrow vascularization in MM is unclear. Since the MM microenvironment is hypoxic, we assessed if hypoxia and/or interactions with MM cells increases pro-angiogenic signaling in Ocys. Hypoxia and/or co-culture with MM cells significantly increased Vegf-a expression in MLOA5-Ocys, and conditioned media (CM) from MLOA5s or MM-MLOA5 co-cultured in hypoxia, significantly increased endothelial tube length compared to normoxic CM. Further, Vegf-a knockdown in MLOA5s or primary Ocys co-cultured with MM cells or neutralizing Vegf-a in MM-Ocy co-culture CM completely blocked the increased endothelial activity. Importantly, Vegf-a-expressing Ocy numbers were significantly increased in MM-injected mouse bones, positively correlating with tumor vessel area. Finally, we demonstrate that direct contact with MM cells increases Ocy Fgf23, which enhanced Vegf-a expression in Ocys. Fgf23 deletion in Ocys blocked these changes. These results suggest hypoxia and MM cells induce a pro-angiogenic phenotype in Ocys via Fgf23 and Vegf-a signaling, which can promote MM-induced marrow vascularization.


Subject(s)
Bone Marrow/blood supply , Fibroblast Growth Factors/physiology , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neovascularization, Pathologic/genetics , Osteocytes/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Bone Resorption/etiology , Cell Line , Female , Fibroblast Growth Factor-23 , Gene Expression/genetics , Humans , Mice , Mice, Inbred C57BL , Osteocytes/metabolism , Osteogenesis , Tumor Microenvironment
18.
JBMR Plus ; 4(3)2020 Mar.
Article in English | MEDLINE | ID: mdl-32161838

ABSTRACT

The integrity of the skeleton is maintained by the coordinated and balanced activities of the bone cells. Osteoclasts resorb bone, osteoblasts form bone, and osteocytes orchestrate the activities of osteoclasts and osteoblasts. A variety of in vitro approaches has been used in an attempt to reproduce the complex in vivo interactions among bone cells under physiological as well as pathological conditions and to test new therapies. Most cell culture systems lack the proper extracellular matrix, cellular diversity, and native spatial distribution of the components of the bone microenvironment. In contrast, ex vivo cultures of fragments of intact bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Further, bone organ cultures predict the in vivo responses to genetic and pharmacologic interventions saving precious time and resources. Moreover, organ cultures using human bone reproduce human conditions and are a useful tool to test patient responses to therapeutic agents. Thus, these ex vivo approaches provide a platform to perform research in bone physiology and pathophysiology. In this review, we describe protocols optimized in our laboratories to establish ex vivo bone organ cultures and provide technical hints and suggestions. In addition, we present examples on how this technical approach can be employed to study osteocyte biology, drug responses in bone, cancer-induced bone disease, and cross-talk between bone and other organs © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

19.
JCI Insight ; 5(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32078587

ABSTRACT

We report that transgenic mice expressing measles virus nucleocapsid protein (MVNP) in osteoclasts (OCLs) (MVNP mice) are Paget's disease (PD) models and that OCLs from patients with PD and MVNP mice express high levels of OCL-derived IGF1 (OCL-IGF1). To determine OCL-IGF1's role in PD and normal bone remodeling, we generated WT and MVNP mice with targeted deletion of Igf1 in OCLs (Igf1-cKO) and MVNP/Igf1-cKO mice, and we assessed OCL-IGF1's effects on bone mass, bone formation rate, EphB2/EphB4 expression on OCLs and osteoblasts (OBs), and pagetic bone lesions (PDLs). A total of 40% of MVNP mice, but no MVNP/Igf1-cKO mice, had PDLs. Bone volume/tissue volume (BV/TV) was decreased by 60% in lumbar vertebrae and femurs of MVNP/Igf1-cKO versus MVNP mice with PDLs and by 45% versus all MVNP mice tested. Bone formation rates were decreased 50% in Igf1-cKO and MVNP/Igf1-cKO mice versus WT and MVNP mice. MVNP mice had increased EphB2 and EphB4 levels in OCLs/OBs versus WT and MVNP/Igf1-cKO, with none detectable in OCLs/OBs of Igf1-cKO mice. Mechanistically, IL-6 induced the increased OCL-IGF1 in MVNP mice. These results suggest that high OCL-IGF1 levels increase bone formation and PDLs in PD by enhancing EphB2/EphB4 expression in vivo and suggest OCL-IGF1 may contribute to normal bone remodeling.


Subject(s)
Bone Remodeling/physiology , Insulin-Like Growth Factor I/metabolism , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Nucleocapsid Proteins , Osteitis Deformans/pathology
20.
Oncotarget ; 10(28): 2709-2721, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31105871

ABSTRACT

Despite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...