Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683377

ABSTRACT

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Subject(s)
B-Lymphocytes , Interferon Type I , Signal Transduction , Spleen , TYK2 Kinase , Toll-Like Receptor 7 , Animals , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Interferon Type I/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Spleen/cytology , Spleen/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics
2.
EMBO J ; 42(23): e113714, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37916875

ABSTRACT

Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.


Subject(s)
Autoimmunity , NK Cell Lectin-Like Receptor Subfamily K , Humans , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Killer Cells, Natural , Dendritic Cells
3.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37917179

ABSTRACT

Monocyte-derived macrophages, the major source of pathogenic macrophages in COVID-19, are oppositely instructed by macrophage CSF (M-CSF) or granulocyte macrophage CSF (GM-CSF), which promote the generation of antiinflammatory/immunosuppressive MAFB+ (M-MØ) or proinflammatory macrophages (GM-MØ), respectively. The transcriptional profile of prevailing macrophage subsets in severe COVID-19 led us to hypothesize that MAFB shapes the transcriptome of pulmonary macrophages driving severe COVID-19 pathogenesis. We have now assessed the role of MAFB in the response of monocyte-derived macrophages to SARS-CoV-2 through genetic and pharmacological approaches, and we demonstrate that MAFB regulated the expression of the genes that define pulmonary pathogenic macrophages in severe COVID-19. Indeed, SARS-CoV-2 potentiated the expression of MAFB and MAFB-regulated genes in M-MØ and GM-MØ, where MAFB upregulated the expression of profibrotic and neutrophil-attracting factors. Thus, MAFB determines the transcriptome and functions of the monocyte-derived macrophage subsets that underlie pulmonary pathogenesis in severe COVID-19 and controls the expression of potentially useful biomarkers for COVID-19 severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Macrophages/metabolism , Macrophages, Alveolar/metabolism , Biomarkers/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
4.
Front Med (Lausanne) ; 10: 1215246, 2023.
Article in English | MEDLINE | ID: mdl-37809329

ABSTRACT

Introduction: SARS-CoV-2 viral load has been related to COVID-19 severity. The main aim of this study was to evaluate the relationship between SARS-CoV-2 viremia and SNPs in genes previously studied by our group as predictors of COVID-19 severity. Materials and methods: Retrospective observational study including 340 patients hospitalized for COVID-19 in the University Hospital La Princesa between March 2020 and December 2021, with at least one viremia determination. Positive viremia was considered when viral load was above the quantifiable threshold (20 copies/ml). A total of 38 SNPs were genotyped. To study their association with viremia a multivariate logistic regression was performed. Results: The mean age of the studied population was 64.5 years (SD 16.6), 60.9% patients were male and 79.4% white non-Hispanic. Only 126 patients (37.1%) had at least one positive viremia. After adjustment by confounders, the presence of the minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 p < 0.0001), rs78958998 (probably associated with SERPING1 expression; A/T genotype OR 2.3, p = 0.04 and T/T genotype OR 12.9, p < 0.0001), and rs713400 (eQTL for TMPRSS2; C/T + T/T genotype OR 1.86, p = 0.10) were associated with higher risk of viremia, whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 0.5, p = 0.04 and G/G genotype OR 0.3, p = 0.01), rs2660 (OAS1; A/G genotype OR 0.6, p = 0.08), rs896 (VIPR1; T/T genotype OR 0.4, p = 0.02) and rs33980500 (TRAF3IP2; C/T + T/T genotype OR 0.3, p = 0.01) were associated with lower risk of viremia. Conclusion: Genetic variants in HMOX1 (rs2071746), SERPING1 (rs78958998), TMPRSS2 (rs713400), CD69 (rs11052877), TRAF3IP2 (rs33980500), OAS1 (rs2660) and VIPR1 (rs896) could explain heterogeneity in SARS-CoV-2 viremia in our population.

5.
Hematol Oncol ; 41(5): 869-876, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37545392

ABSTRACT

The Bruton's tyrosine kinase inhibitor ibrutinib and the B-cell lymphoma 2 anti-apoptotic protein inhibitor venetoclax provide high response rates in chronic lymphocytic leukemia (CLL). However, there is a growing number of patients that relapse after treatment or show refractory disease, thus new targets and agents are still needed. We have previously reported the chemokine receptor CCR7 as a relevant deregulated target in CLL and have developed CAP-100, a novel therapeutic anti-CCR7 antibody that is under evaluation for relapse/refractory CLL (NCT04704323). While CCR7 expression has been shown to be down-modulated in CLL patients treated with ibrutinib, whether venetoclax acts in a similar manner remains unaddressed. Here, we aimed to document the impact of venetoclax on CCR7 expression in CLL cells, as well as on the pre-clinical activity of CAP-100. To this end, we addressed CCR7 expression by flow cytometry and the antibody efficacy by means of in vitro chemotactic and antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Our data indicate that venetoclax treatment did not significantly modify CCR7 expression pattern nor CAP-100 mechanisms of action. Together, these findings support CAP-100 as an adjuvant therapy to venetoclax that may introduce additional modes of action in CLL therapy.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptors, CCR7/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Recurrence
6.
Life Sci Alliance ; 5(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-35680409

ABSTRACT

We identified an error in the abstract of the article: TPMRSS2 rs75603675 OR is incorrectly indicated. It should read (OR = 2.140) instead of (OR = 0.586). We apologize for this error. However, since the main text is correct, it has no impact on the results displayed in the study.

7.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35636966

ABSTRACT

By the end of December 2021, coronavirus disease 2019 (COVID-19) produced more than 271 million cases and 5.3 million deaths. Although vaccination is an effective strategy for pandemic control, it is not yet equally available in all countries. Therefore, identification of prognostic biomarkers remains crucial to manage COVID-19 patients. The aim of this study was to evaluate predictors of COVID-19 severity previously proposed. Clinical and demographic characteristics and 120 single-nucleotide polymorphisms were analyzed from 817 patients with COVID-19, who attended the emergency department of the Hospital Universitario de La Princesa during March and April 2020. The main outcome was a modified version of the 7-point World Health Organization (WHO) COVID-19 severity scale (WHOCS); both in the moment of the first hospital examination (WHOCS-1) and of the severest WHOCS score (WHOCS-2). The TMPRSS2 rs75603675 genotype (OR = 0.586), dyslipidemia (OR = 2.289), sex (OR = 0.586), and the Charlson Comorbidity Index (OR = 1.126) were identified as the main predictors of disease severity. Consequently, these variables might influence COVID-19 severity and could be used as predictors of disease development.


Subject(s)
COVID-19 , COVID-19/diagnosis , Comorbidity , Female , Humans , Male , Serine , Serine Endopeptidases/genetics , Severity of Illness Index , Sex Factors
8.
Genes (Basel) ; 11(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260630

ABSTRACT

B-cell precursor acute lymphoblastic leukaemia (B-ALL) is a malignancy of lymphoid progenitor cells with altered genes including the Janus kinase (JAK) gene family. Among them, tyrosine kinase 2 (TYK2) is involved in signal transduction of cytokines such as interferon (IFN) α/ß through IFN-α/ß receptor alpha chain (IFNAR1). To search for disease-associated TYK2 variants, bone marrow samples from 62 B-ALL patients at diagnosis were analysed by next-generation sequencing. TYK2 variants were found in 16 patients (25.8%): one patient had a novel mutation at the four-point-one, ezrin, radixin, moesin (FERM) domain (S431G) and two patients had the rare variants rs150601734 or rs55882956 (R425H or R832W). To functionally characterise them, they were generated by direct mutagenesis, cloned in expression vectors, and transfected in TYK2-deficient cells. Under high-IFNα doses, the three variants were competent to phosphorylate STAT1/2. While R425H and R832W induced STAT1/2-target genes measured by qPCR, S431G behaved as the kinase-dead form of the protein. None of these variants phosphorylated STAT3 in in vitro kinase assays. Molecular dynamics simulation showed that TYK2/IFNAR1 interaction is not affected by these variants. Finally, qPCR analysis revealed diminished expression of TYK2 in B-ALL patients at diagnosis compared to that in healthy donors, further stressing the tumour immune surveillance role of TYK2.


Subject(s)
Molecular Dynamics Simulation , Mutation , Neoplasm Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , TYK2 Kinase , Adolescent , Adult , Cell Line, Tumor , Child , Child, Preschool , Female , Humans , Infant , Male , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , TYK2 Kinase/chemistry , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
9.
Oxid Med Cell Longev ; 2020: 2908108, 2020.
Article in English | MEDLINE | ID: mdl-32377294

ABSTRACT

Humans in modern industrial and postindustrial societies face sustained challenges from environmental pollutants, which can trigger tissue damage from xenotoxic stress through different mechanisms. Thus, the identification and characterization of compounds capable of conferring antioxidant effects and protection against these xenotoxins are warranted. Here, we report that the natural extract of Polypodium leucotomos named Fernblock®, known to reduce aging and oxidative stress induced by solar radiations, upregulates the NRF2 transcription factor and its downstream antioxidant targets, and this correlates with its ability to reduce inflammation, melanogenesis, and general cell damage in cultured keratinocytes upon exposure to an experimental model of fine pollutant particles (PM2.5). Our results provide evidence for a specific molecular mechanism underpinning the protective activity of Fernblock® against environmental pollutants and potentially other sources of oxidative stress and damage-induced aging.


Subject(s)
Antioxidants/therapeutic use , Keratinocytes/drug effects , NF-E2-Related Factor 2/metabolism , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Antioxidants/pharmacology , Humans , Plant Extracts/pharmacology , Protective Agents/pharmacology , Up-Regulation
10.
Cancers (Basel) ; 12(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183017

ABSTRACT

Photodynamic Therapy (PDT) with methyl-aminolevulinate (MAL-PDT) is being used for the treatment of Basal Cell Carcinoma (BCC), although resistant cells may appear. Normal differentiated cells depend primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate energy, but cancer cells switch this metabolism to aerobic glycolysis (Warburg effect), influencing the response to therapies. We have analyzed the expression of metabolic markers (ß-F1-ATPase/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratio, pyruvate kinase M2 (PKM2), oxygen consume ratio, and lactate extracellular production) in the resistance to PDT of mouse BCC cell lines (named ASZ and CSZ, heterozygous for ptch1). We have also evaluated the ability of metformin (Metf), an antidiabetic type II compound that acts through inhibition of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway to sensitize resistant cells to PDT. The results obtained indicated that resistant cells showed an aerobic glycolysis metabolism. The treatment with Metf induced arrest in the G0/G1 phase and a reduction in the lactate extracellular production in all cell lines. The addition of Metf to MAL-PDT improved the cytotoxic effect on parental and resistant cells, which was not dependent on the PS protoporphyrin IX (PpIX) production. After Metf + MAL-PDT treatment, activation of pAMPK was detected, suppressing the mTOR pathway in most of the cells. Enhanced PDT-response with Metf was also observed in ASZ tumors. In conclusion, Metf increased the response to MAL-PDT in murine BCC cells resistant to PDT with aerobic glycolysis.

11.
PLoS One ; 15(3): e0222619, 2020.
Article in English | MEDLINE | ID: mdl-32150577

ABSTRACT

Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-ß1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-ß1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.


Subject(s)
Eczema/genetics , Epidermis/pathology , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Keratosis/genetics , Skin/metabolism , Transgenes , Acetamides/pharmacology , Animals , Cytokines/metabolism , Doxycycline/pharmacology , Eczema/drug therapy , Female , Homeostasis/genetics , Hyperplasia/drug therapy , Hyperplasia/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Keratinocytes/metabolism , Keratosis/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Trans-Activators/metabolism , Trityl Compounds/pharmacology
12.
Int J Mol Sci ; 21(3)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024276

ABSTRACT

Skin is being increasingly exposed to artificial blue light due to the extensive use of electronic devices. This, together with recent observations reporting that blue light-also known as high-energy visible light-can exert cytotoxic effects associated with oxidative stress and promote hyperpigmentation, has sparked interest in blue light and its potential harmful effects on skin. The photoprotective properties of new extracts of different botanicals with antioxidant activity are therefore being studied. Deschampsia antarctica (Edafence®, EDA), a natural aqueous extract, has shown keratinocyte and fibroblast cell protection effects against ultraviolet radiation and dioxin toxicity. In this regard, we studied the protective capacity of EDA against the deleterious effects of artificial blue light irradiation in human dermal fibroblasts (HDF) and melanocytes. We analyzed the impact of EDA on viability, cell morphology, oxidative stress, melanogenic signaling pathway activation and hyperpigmentation in HDF and melanocytes subjected to artificial blue light irradiation. Our results show that EDA protects against cell damage caused by artificial blue light, decreasing oxidative stress, melanogenic signaling pathway activation and hyperpigmentation caused by blue light irradiation. All these findings suggest that EDA might help prevent skin damage produced by artificial blue light exposure from screen of electronic devices.


Subject(s)
Light/adverse effects , Plant Extracts/pharmacology , Poaceae/chemistry , Protective Agents/pharmacology , Skin Aging/drug effects , Skin/drug effects , Wearable Electronic Devices/adverse effects , Cell Survival , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Oxidative Stress , Reactive Oxygen Species , Skin/cytology , Skin/radiation effects , Skin Aging/pathology
13.
Int J Mol Sci ; 20(5)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862116

ABSTRACT

Photodynamic therapy (PDT) constitutes a cancer treatment modality based on the administration of a photosensitizer, which accumulates in tumor cells. The subsequent irradiation of the tumoral area triggers the formation of reactive oxygen species responsible for cancer cell death. One of the compounds approved in clinical practice is methyl-aminolevulinate (MAL), a protoporphyrin IX (PpIX) precursor intermediate of heme synthesis. We have identified the mitotic catastrophe (MC) process after MAL-PDT in HeLa human carcinoma cells. The fluorescence microscopy revealed that PpIX was located mainly at plasma membrane and lysosomes of HeLa cells, although some fluorescence was also detected at endoplasmic reticulum and Golgi apparatus. Cell blockage at metaphase-anaphase transition was observed 24 h after PDT by phase contrast microscopy and flow cytometry. Mitotic apparatus components evaluation by immunofluorescence and Western blot indicated: multipolar spindles and disorganized chromosomes in the equatorial plate accompanied with dispersion of centromeres and alterations in aurora kinase proteins. The mitotic blockage induced by MAL-PDT resembled that induced by two compounds used in chemotherapy, taxol and nocodazole, both targeting microtubules. The alterations in tumoral cells provided evidence of MC induced by MAL-PDT, resolving mainly by apoptosis, directly or through the formation of multinucleate cells.


Subject(s)
Aminolevulinic Acid/analogs & derivatives , Mitosis/drug effects , Mitosis/radiation effects , Photochemotherapy , Photosensitizing Agents/pharmacology , Aminolevulinic Acid/pharmacology , Biomarkers , Cell Division/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , HeLa Cells , Humans , Microtubules/metabolism , Protein Transport , Protoporphyrins/metabolism , Spindle Apparatus
14.
Int J Mol Sci ; 20(5)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857243

ABSTRACT

Abstract: The epithelial intermediate-conductance calcium/calmodulin-regulated KCa3.1 channel is considered to be a regulator of intestine function by controlling chloride secretion and water/salt balance. Yet, little is known about the functional importance of KCa3.1 in the intestinal epithelium in vivo. Our objective was to determine the impact of epithelial-specific inducible overexpression of a KCa3.1 transgene (KCa3.1+) and of inducible suppression (KCa3.1-) on intestinal homeostasis and function in mice. KCa3.1 overexpression in the duodenal epithelium of doxycycline (DOX)-treated KCa3.1+ mice was 40-fold above the control levels. Overexpression caused an inflated duodenum and doubling of the chyme content. Histology showed conserved architecture of crypts, villi, and smooth muscle. Unaltered proliferating cell nuclear antigen (PCNA) immune reactivity and reduced amounts of terminal deoxynucleotide transferase mediated X-dUTP nick end labeling (TUNEL)-positive apoptotic cells in villi indicated lower epithelial turnover. Myography showed a reduction in the frequency of spontaneous propulsive muscle contractions with no change in amplitude. The amount of stool in the colon was increased and the frequency of colonic contractions was reduced in KCa3.1+ animals. Senicapoc treatment prevented the phenotype. Suppression of KCa3.1 in DOX-treated KCa3.1- mice caused no overt intestinal phenotype. In conclusion, inducible KCa3.1 overexpression alters intestinal functions by increasing the chyme content and reducing spontaneous contractions and epithelial apoptosis. Induction of epithelial KCa3.1 can play a mechanistic role in the process of adaptation of the intestine.


Subject(s)
Duodenum/physiology , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intestinal Mucosa/physiology , Animals , Digestion , Duodenum/ultrastructure , Gene Deletion , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intestinal Mucosa/ultrastructure , Mice , Mice, Inbred C57BL , Muscle Contraction , Transgenes , Up-Regulation
15.
J Cell Mol Med ; 20(5): 980-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26915562

ABSTRACT

We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll-like receptor 4 (TLR4). However, Gram-negative pathogen-associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co-purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS. Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12-iE-DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12-iE-DAP-dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF-κB appear to be downstream mediators in the NOD1 pathway. In summary, these results indicate that pericytes can sense Gram-negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.


Subject(s)
Lipopolysaccharides/pharmacology , Nod1 Signaling Adaptor Protein/genetics , Peptidoglycan/pharmacology , Pericytes/drug effects , Toll-Like Receptor 4/genetics , Brain/blood supply , Brain/cytology , Brain/metabolism , Cerebral Arteries/cytology , Cerebral Arteries/metabolism , Gene Expression Regulation , Humans , Inflammation , Interleukin-6/biosynthesis , Interleukin-6/metabolism , Interleukin-8/biosynthesis , Interleukin-8/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Pericytes/cytology , Pericytes/metabolism , Primary Cell Culture , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...