Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Purinergic Signal ; 20(2): 127-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37776398

ABSTRACT

The P2X7 receptor (P2X7R) stands out within the purinergic family as it has exclusive pharmacological and regulatory features, and it fulfills distinct roles depending on the type of stimulation and cellular environment. Tonic activation of P2X7R promotes cell proliferation, whereas sustained activation is associated with cell death. Yet strikingly, prolonged P2X7R activation in rat cerebellar granule neurons and astrocytes does not affect cell survival. The intracellular pathways activated by P2X7Rs involve proteins like MAPKs, ERK1/2 and p38, and interactions with growth factor receptors could explain their behavior in populations of rat cerebellar cells. In this study, we set out to characterize the intracellular mechanisms through which P2X7Rs and Trk receptors, EGFR (epidermal growth factor receptor) and BDNFR (brain-derived neurotrophic factor receptor), regulate the dual-specificity phosphatase DUSP1. In cerebellar astrocytes, the regulation of DUSP1 expression by P2X7R depends on ERK and p38 activation. EGFR stimulation can also induce DUSP1 expression, albeit less strongly than P2X7R. Conversely, EGF was virtually ineffective in regulating DUSP1 in granule neurons, a cell type in which BDNF is the main regulator of DUSP1 expression and P2X7R only induces a mild response. Indeed, the regulation of DUSP1 elicited by BDNF reflects the balance between both transcriptional and post-transcriptional mechanisms. Importantly, when the regulation of DUSP1 expression is compromised, the viability of both astrocytes and neurons is impaired, suggesting this phosphatase is essential to maintain proper cell cytoarchitecture and functioning.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptors, Purinergic P2X7 , Animals , Rats , ErbB Receptors/metabolism , Neurons/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction
2.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233228

ABSTRACT

As members of the family of nucleotide receptors, P2X7 receptors are of particular interest due to their unique structural and pharmacological characteristics. As ATP-gated ionic channels, P2X7 receptors in their activation elicit membrane depolarization; extracellular calcium influx; and activation of several downstream intracellular signaling pathways, some of them independent of the ionic channel activity. Further interactions of P2X7 receptors and cytoskeleton-related proteins have also been confirmed, and we previously described the effects of P2X7 receptor stimulation on the morphology of rat cerebellar astrocytes. In the present work, we used time-lapse video microscopy and atomic force microscopy (AFM) to elucidate the effects of P2X7 receptor stimulation on the morphology, migratory capabilities, and mechanical properties of rat cerebellar astrocytes in vitro. Stimulation of P2X7 receptors with the selective agonist BzATP specifically caused an increase in cell size, motility, and number of membrane protrusions of the astrocytes in culture. These effects were reverted when cells were previously treated with the competitive antagonist of P2X7R, A 438079. AFM analysis also showed an increase in cell stiffness and viscosity after P2X7 receptor stimulation. Surprisingly, these effects on the mechanical properties of the cell were not blocked by the treatment with the antagonist. Fluorescence microscopy analysis of the actin cytoskeleton showed an increase in actin stress fibers after BzATP treatment, an effect that again was not blocked by previous treatment with the antagonist, further confirming that the effects of P2X7 receptors on the cytoskeleton of astrocytes are, at least in part, independent of the ionic channel activity.


Subject(s)
Astrocytes , Nucleotides , Actins/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Astrocytes/metabolism , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Nucleotides/metabolism , Rats , Receptors, Purinergic P2X7/metabolism
3.
Front Cell Dev Biol ; 10: 1049566, 2022.
Article in English | MEDLINE | ID: mdl-36589747

ABSTRACT

P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.

4.
STAR Protoc ; 2(4): 100964, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34841278

ABSTRACT

Low-density cell culture of the postnatal cerebellum, combined with live imaging and single-cell tracking, allows the behavior of postnatal cerebellar neural stem cells (NSCs) and their progeny to be monitored. Cultured cerebellar NSCs maintain their neurogenic nature giving rise, in the same relative proportions that exist in vivo, to the neuronal progeny generated by the three postnatal cerebellar neurogenic niches. This protocol describes the identification of the nature of the progeny through both post-imaging immunocytochemistry and patch-clamp recordings. For complete details on the use and execution of this protocol, please refer to Paniagua-Herranz et al. (2020b).


Subject(s)
Cerebellum/cytology , Cytological Techniques/methods , Neural Stem Cells/cytology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL
5.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445630

ABSTRACT

Purinergic signaling regulates a plethora of physiological processes and is an expanding research field [...].


Subject(s)
Adenosine Triphosphate/metabolism , Gap Junctions/physiology , Receptors, Purinergic/metabolism , Animals , Humans , Signal Transduction
6.
Biochem Pharmacol ; 187: 114472, 2021 05.
Article in English | MEDLINE | ID: mdl-33587917

ABSTRACT

For the past three decades, our laboratory has conducted pioneering research to elucidate the complexity of purinergic signaling in the CNS, alone and in collaboration with other groups, inspired by the ground-breaking efforts of Geoffrey Burnstock. This review summarizes our contribution to understand the nucleotide receptor signaling in the CNS with a special focus on the P2X7 receptor.


Subject(s)
Central Nervous System/metabolism , Neurodegenerative Diseases/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Central Nervous System/drug effects , Humans , Neurodegenerative Diseases/drug therapy , Purinergic P2X Receptor Agonists/administration & dosage , Purinergic P2X Receptor Antagonists/administration & dosage , Signal Transduction/drug effects , Signal Transduction/physiology
7.
Int J Mol Sci ; 22(2)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435130

ABSTRACT

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young's modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young's modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.


Subject(s)
Adenosine Diphosphate/analogs & derivatives , Astrocytes/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2/metabolism , Thionucleotides/metabolism , Uridine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Astrocytes/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Microscopy, Atomic Force , Signal Transduction , Thionucleotides/pharmacology , Uridine Triphosphate/pharmacology
8.
Stem Cell Reports ; 15(5): 1080-1094, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33065045

ABSTRACT

Little is known about the intrinsic specification of postnatal cerebellar neural stem cells (NSCs) and to what extent they depend on information from their local niche. Here, we have used an adapted cell preparation of isolated postnatal NSCs and live imaging to demonstrate that cerebellar progenitors maintain their neurogenic nature by displaying hallmarks of NSCs. Furthermore, by using this preparation, all the cell types produced postnatally in the cerebellum, in similar relative proportions to those observed in vivo, can be monitored. The fact that neurogenesis occurs in such organized manner in the absence of signals from the local environment, suggests that cerebellar lineage progression is to an important extent governed by cell-intrinsic or pre-programmed events. Finally, we took advantage of the absence of the niche to assay the influence of the vesicular nucleotide transporter inhibition, which dramatically reduced the number of NSCs in vitro by promoting their progression toward neurogenesis.


Subject(s)
Cerebellum/metabolism , Neural Stem Cells/cytology , Neurogenesis , Nucleotide Transport Proteins/physiology , Time-Lapse Imaging , Animals , Cell Cycle , Cell Differentiation , Cell Division , Cell Lineage , Cell Proliferation , Cells, Cultured , Mice , Mice, Inbred C57BL , Microscopy , Single-Cell Analysis
9.
Br J Pharmacol ; 177(11): 2413-2433, 2020 06.
Article in English | MEDLINE | ID: mdl-32037507

ABSTRACT

Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.


Subject(s)
Purinergic P2Y Receptor Agonists , Purinergic P2Y Receptor Antagonists , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Neurons , Receptors, Purinergic P2Y1
10.
Methods Mol Biol ; 2150: 183-194, 2020.
Article in English | MEDLINE | ID: mdl-31020634

ABSTRACT

A comprehensive understanding of the mechanisms controlling the behavior of cell populations with regenerative potential is the first step to design effective therapeutic strategies for many diseases. However, a precise description of the biological events involved, such as proliferation, differentiation, cell fate decisions, migration, or viability, may be hampered by the classical use of experiments based on end-point analysis. By contrast, live imaging and single cell tracking provides researchers with an accurate readout of these features in cells throughout an experiment. Here, we describe a protocol to apply time-lapse video microscopy and post-processing of the data to study critical aspects of the biology and the lineage progression of multiple neural populations.


Subject(s)
Cell Tracking , Microscopy, Video , Neurons/cytology , Single-Cell Analysis , Time-Lapse Imaging/methods , Animals , Cell Lineage , Cell Survival , Cells, Cultured , Image Processing, Computer-Assisted
11.
Methods Mol Biol ; 2041: 311-321, 2020.
Article in English | MEDLINE | ID: mdl-31646499

ABSTRACT

Calcium is one of the most important intracellular messengers, triggering a wide range of cellular responses. Changes in intracellular free calcium concentration can be measured using calcium sensitive fluorescent dyes, which are either EGTA- or BAPTA-based organic molecules that change their spectral properties in response to Ca2+ binding. One of the most common calcium indicators is the ratiometric dye Fura-2. The main advantage of using ratiometric dyes is that the ratio signal is independent of the illumination intensity, dye concentration, photobleaching, and focus changes among others, allowing for the concentration of intracellular calcium to be determined independently of these artifacts. In this protocol, we describe the use of Fura-2 to measure intracellular calcium elevations in single cultured cells after purinoceptor activation using a video-microscopy equipment. This method, usually known as calcium imaging, allows for real-time quantification of intracellular calcium dynamics and can be adapted to measure agonist mediated intracellular calcium responses due to the activation of different purinergic receptors in several cellular models using the appropriate growth conditions.


Subject(s)
Calcium Signaling , Calcium/metabolism , Fura-2/metabolism , Microscopy, Video/instrumentation , Microscopy, Video/methods , Receptors, Purinergic/metabolism , Animals , Cells, Cultured , Fluorescent Dyes/metabolism , Humans , Microscopy, Fluorescence
12.
Front Cell Neurosci ; 13: 224, 2019.
Article in English | MEDLINE | ID: mdl-31156398

ABSTRACT

Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in the central nervous system. Neurotransmitter uptake into secretory vesicles is carried out by vesicular transporters, which use the electrochemical proton gradient generated by a vacuolar H+-ATPase to drive neurotransmitter vesicular accumulation. ATP and other nucleotides are relevant extracellular signaling molecules that participate in a variety of biological processes. Although the active transport of nucleotides into secretory vesicles has been characterized from the pharmacological and biochemical point of view, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, the human SLC17A9 gene, the last identified member of the SLC17 transporters, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport a wide variety of nucleotides in a vesicular membrane potential-dependent manner. VNUT knockout mice lack vesicular storage and release of ATP, resulting in blockage of the purinergic transmission. This review summarizes the current studies on VNUT and analyzes the physiological relevance of the vesicular nucleotide transport in the central nervous system. The possible role of VNUT in the development of some pathological processes, such as chronic neuropathic pain or glaucoma is also discussed. The putative involvement of VNUT in these pathologies raises the possibility of the use of VNUT inhibitors for therapeutic purposes.

13.
Int J Mol Sci ; 20(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018603

ABSTRACT

Dual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to DUSP transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation. Potent DUSP gene inducers also include cannabinoids, which preserve DUSP activity in inflammatory conditions. Additionally, nucleotides activating P2X7 and P2Y13 nucleotide receptors behave as novel players in the regulation of DUSP function. They increase cell survival in stressful conditions, regulating DUSP protein turnover and inducing DUSP gene expression. In general terms, in the context of neural cells exposed to damaging conditions, the recovery of DUSP activity is neuroprotective and counteracts pro-apoptotic over-activation of p38 and JNK. In addition, remarkable changes in DUSP function take place during the onset of neuropathologies. The restoration of proper DUSP levels and recovery of MAPK homeostasis underlie the therapeutic effect, indicating that DUSPs can be relevant targets for brain diseases.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Neuroglia/metabolism , Neurons/metabolism , Animals , Brain Diseases/metabolism , Brain Diseases/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Nerve Growth Factors/metabolism , Neurogenesis , Neuroglia/cytology , Neuroglia/pathology , Neurons/cytology , Neurons/pathology , Oxidative Stress , Pain/metabolism , Pain/pathology
14.
Brain Res Bull ; 151: 74-83, 2019 09.
Article in English | MEDLINE | ID: mdl-30593879

ABSTRACT

Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.


Subject(s)
Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/metabolism , Animals , Brain/metabolism , Brain Injuries/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , MAP Kinase Signaling System , Neuroglia/metabolism , Neurons/metabolism , Neuroprotection/physiology , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2X/physiology , Receptors, Purinergic P2X7/physiology , Receptors, Purinergic P2Y/metabolism , Receptors, Purinergic P2Y/physiology , Receptors, Purinergic P2Y1/physiology , Signal Transduction
15.
J Vis Exp ; (130)2017 12 16.
Article in English | MEDLINE | ID: mdl-29286427

ABSTRACT

Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.


Subject(s)
Cell Biology/instrumentation , Cell Lineage/physiology , Cell Tracking/methods , Microscopy, Video/methods , Neurons/ultrastructure , Single-Cell Analysis/methods , Animals , Cell Differentiation/physiology , Cytological Techniques/methods , Humans , Monitoring, Physiologic , Neurons/cytology
16.
Adv Exp Med Biol ; 1051: 139-168, 2017.
Article in English | MEDLINE | ID: mdl-28815513

ABSTRACT

The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.


Subject(s)
MAP Kinase Signaling System , Polymorphism, Genetic , Receptors, Purinergic P2 , Animals , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 3/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mice, Knockout , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Structure-Activity Relationship
17.
Front Pharmacol ; 8: 937, 2017.
Article in English | MEDLINE | ID: mdl-29311938

ABSTRACT

Prostaglandin E2 (PGE2) is an important bioactive lipid that accumulates after tissue damage or inflammation due to the rapid expression of cyclooxygenase 2. PGE2 activates specific G-protein coupled EP receptors and it mediates pro- or anti-inflammatory actions depending on the cell-context. Nucleotides can also be released in these situations and they even contribute to PGE2 production. We previously described the selective impairment of P2Y nucleotide signaling by PGE2 in macrophages and fibroblasts, an effect independent of prostaglandin receptors but that involved protein kinase C (PKC) and protein kinase D (PKD) activation. Considering that macrophages and fibroblasts influence inflammatory responses and tissue remodeling, a similar mechanism involving P2Y signaling could occur in astrocytes in response to neuroinflammation and brain repair. We analyzed here the modulation of cellular responses involving P2Y2/P2Y4 receptors by PGE2 in rat cerebellar astrocytes. We demonstrate that PGE2 inhibits intracellular calcium responses elicited by UTP in individual cells and that inhibiting this P2Y signaling impairs the astrocyte migration elicited by this nucleotide. Activation of EP3 receptors by PGE2 not only impairs the calcium responses but also, the extracellular regulated kinases (ERK) and Akt phosphorylation induced by UTP. However, PGE2 requires epidermal growth factor receptor (EGFR) transactivation in order to dampen P2Y signaling. In addition, these effects of PGE2 also occur in a pro-inflammatory context, as evident in astrocytes stimulated with bacterial lipopolysaccharide (LPS). While we continue to investigate the intracellular mechanisms responsible for the inhibition of UTP responses, the involvement of novel PKC and PKD in cerebellar astrocytes cannot be excluded, kinases that could promote the internalization of P2Y receptors in fibroblasts.

18.
Front Mol Neurosci ; 10: 448, 2017.
Article in English | MEDLINE | ID: mdl-29375309

ABSTRACT

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play a central role in the intracellular signaling of P2X7 nucleotide receptors in neurons and glial cells. Fine spatio-temporal tuning of mitogen-activated protein (MAP) kinases is essential to regulate their biological activity. MAP kinase phosphatases (MKPs) are dual specificity protein phosphatases (DUSPs) that dephosphorylate phosphothreonine and phosphotyrosine residues in MAP kinases. This study focuses on how DUSP, DUSP6/MKP3, a phosphatase specific for ERK1/2 is regulated by the P2X7 nucleotide receptor in cerebellar granule neurons and astrocytes. Stimulation with the specific P2X7 agonist, BzATP, or epidermal growth factor (EGF) (positive control for ERK activation) regulates the levels of DUSP6 in a time dependent manner. Both agonists promote a decline in DUSP6 protein, reaching minimal levels after 30 min yet recovering to basal levels after 1 h. The initial loss of protein occurs through proteasomal degradation, as confirmed in experiments with the proteasome inhibitor, MG-132. Studies carried out with Actinomycin D demonstrated that the enhanced transcription of the Dusp6 gene is responsible for recovering the DUSP6 protein levels. Interestingly, ERK1/2 proteins are involved in the biphasic regulation of the protein phosphatase, being required for both the degradation and the recovery phase. We show that direct Ser197 phosphorylation of DUSP6 by ERK1/2 proteins could be part of the mechanism regulating their cytosolic levels, at least in glial cells. Thus, the ERK1/2 activated by P2X7 receptors exerts positive feedback on these kinase's own activity, promoting the degradation of one of their major inactivators in the cytosolic compartment, DUSP6, both in granule neurons and astrocytes. This feedback loop seems to function as a common universal mechanism to regulate ERK signaling in neural and non-neural cells.

19.
Neuropharmacology ; 104: 243-54, 2016 05.
Article in English | MEDLINE | ID: mdl-26359530

ABSTRACT

Brain injury generates the release of a multitude of factors including extracellular nucleotides, which exhibit bi-functional properties and contribute to both detrimental actions in the acute phase and also protective and reparative actions in the later recovery phase to allow neuroregeneration. A promising strategy toward restoration of neuronal function is based on activation of endogenous adult neural stem/progenitor cells. The implication of purinergic signaling in stem cell biology, including regulation of proliferation, differentiation, and cell death has become evident in the last decade. In this regard, current strategies of acute transplantation of ependymal stem/progenitor cells after spinal cord injury restore altered expression of P2X4 and P2X7 receptors and improve functional locomotor recovery. The expression of both receptors is transcriptionally regulated by Sp1 factor, which plays a key role in the startup of the transcription machinery to induce regeneration-associated genes expression. Finally, general signaling pathways triggered by nucleotide receptors in neuronal populations converge on several intracellular kinases, such as PI3K/Akt, GSK3 and ERK1,2, as well as the Nrf-2/heme oxigenase-1 axis, which specifically link them to neuroprotection. In this regard, regulation of dual specificity protein phosphatases can become novel mechanism of actions for nucleotide receptors that associate them to cell homeostasis regulation. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Subject(s)
Nerve Regeneration , Neural Stem Cells/metabolism , Neurons/metabolism , Receptors, Purinergic/metabolism , Spinal Cord Injuries/metabolism , Animals , Brain Injuries/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Neural Stem Cells/transplantation , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Signal Transduction
20.
Cardiovasc Res ; 106(3): 375-86, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25824149

ABSTRACT

AIMS: Inflammation is a significant contributor to cardiovascular disease and its complications; however, whether the myocardial inflammatory response is harmonized after cardiac injury remains to be determined. Some receptors of the innate immune system, including the nucleotide-binding oligomerization domain-like receptors (NLRs), play key roles in the host response after cardiac damage. Nucleotide-binding oligomerization domain containing 1 (NOD1), a member of the NLR family, is expressed in the heart, but its functional role has not been elucidated. We determine whether selective NOD1 activation modulates cardiac function and Ca(2+) signalling. METHODS AND RESULTS: Mice were treated for 3 days with the selective NOD1 agonist C12-iE-DAP (iE-DAP), and cardiac function and Ca(2+) cycling were assessed. We found that iE-DAP treatment resulted in cardiac dysfunction, measured as a decrease in ejection fraction and fractional shortening. Cardiomyocytes isolated from iE-DAP-treated mice displayed a decrease in the L-type Ca(2+) current, [Ca(2+)]i transients and Ca(2+) load, and decreased expression of phospho-phospholamban, sarcoplasmic reticulum-ATPase, and Na(+)-Ca(2+) exchanger. Furthermore, iE-DAP prompted 'diastolic Ca(2+) leak' in cardiomyocytes, resulting from increased Ca(2+) spark frequency and RyR2 over-phosphorylation. Importantly, these iE-DAP-induced changes in Ca(2+) cycling were lost in NOD1(-/-) mice, indicating that iE-DAP exerts its actions through NOD1. Co-treatment of mice with iE-DAP and a selective inhibitor of NF-κB (BAY11-7082) prevented cardiac dysfunction and Ca(2+) handling impairment induced by iE-DAP. CONCLUSION: Our data provide the first evidence that NOD1 activation induces cardiac dysfunction associated with excitation-contraction coupling impairment through NF-κB activation and uncover a new pro-inflammatory player in the regulation of cardiovascular function.


Subject(s)
Calcium/metabolism , Excitation Contraction Coupling , Inflammation Mediators/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Animals , Anti-Inflammatory Agents/pharmacology , Calcium Channels, L-Type/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Excitation Contraction Coupling/drug effects , Inflammation Mediators/agonists , Inflammation Mediators/antagonists & inhibitors , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , NF-kappa B/metabolism , Nod1 Signaling Adaptor Protein/agonists , Nod1 Signaling Adaptor Protein/antagonists & inhibitors , Nod1 Signaling Adaptor Protein/deficiency , Nod1 Signaling Adaptor Protein/genetics , Phosphorylation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Stroke Volume , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...