Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pathol ; 259(1): 10-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36210634

ABSTRACT

Chromatin licensing and DNA replication factor 1 (CDT1), a protein of the pre-replicative complex, is essential for loading the minichromosome maintenance complex (MCM) helicases onto the origins of DNA replication. While several studies have shown that dysregulation of CDT1 expression causes re-replication and DNA damage in cell lines, and CDT1 is highly expressed in several human cancers, whether CDT1 deregulation is sufficient to enhance tumorigenesis in vivo is currently unclear. To delineate its role in vivo, we overexpressed Cdt1 in the mouse colon and induced carcinogenesis using azoxymethane/dextran sodium sulfate (AOM/DSS). Here, we show that mice overexpressing Cdt1 develop a significantly higher number of tumors with increased tumor size, and more severe dysplastic changes (high-grade dysplasia), compared with control mice under the same treatment. These tumors exhibited an increased growth rate, while cells overexpressing Cdt1 loaded greater amounts of Mcm2 onto chromatin, demonstrating origin overlicensing. Adenomas overexpressing Cdt1 showed activation of the DNA damage response (DDR), apoptosis, formation of micronuclei, and chromosome segregation errors, indicating that aberrant expression of Cdt1 results in increased genomic and chromosomal instability in vivo, favoring cancer development. In line with these results, high-level expression of CDT1 in human colorectal cancer tissue specimens and colorectal cancer cell lines correlated significantly with increased origin licensing, activation of the DDR, and microsatellite instability (MSI). © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colorectal Neoplasms , DNA Replication , DNA-Binding Proteins , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , DNA Damage , DNA-Binding Proteins/metabolism
2.
Photochem Photobiol ; 98(3): 609-616, 2022 05.
Article in English | MEDLINE | ID: mdl-34706095

ABSTRACT

Some early reports demonstrate that levels of cyclobutane pyrimidine dimers (CPD) may increase after UVR exposure had ended, although these observations were treated as artifacts. More recently, it has been shown unequivocally that CPD formation does occur post-irradiation, with maximal levels occurring after about 2-3 h. These lesions have been termed "dark CPD" (dCPD). Subsequent studies have confirmed their presence in vitro, in mouse models and in human skin in vivo. Melanin carbonyls have a role in the formation of dCPD, but they have also been observed in amelanotic systems, indicating other, unknown process(es) exist. In both cases, the formation of dCPD can be prevented by the presence of certain antioxidants. We lack data on the spectral dependence of dCPD, but it is unlikely to be the same as for incident CPD (iCPD), which are formed only during irradiation. There is evidence that iCPD and dCPD may have different repair kinetics, although this remains to be elucidated. It is also unknown whether iCPD and dCPD have different biological properties. The formation of dCPD in human skin in vivo has implications for post solar exposure photoprotection, and skin carcinogenesis, with a need for this to be investigated further.


Subject(s)
DNA Damage , Pyrimidine Dimers , Animals , DNA Repair , Melanins , Mice , Polymers , Pyrimidine Dimers/radiation effects , Skin/radiation effects , Ultraviolet Rays
3.
In Vivo ; 35(2): 1285-1294, 2021.
Article in English | MEDLINE | ID: mdl-33622932

ABSTRACT

The severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) emerged in late 2019 and has caused a pandemic known as corona virus disease 2019 (COVID-19), responsible for the death of more than 2 million people worldwide. The outbreak of COVID-19 has posed an unprecedented threat on human lives and public safety. The aim of this review is to describe key aspects of the bio-pathology of the novel disease, and discuss aspects of its spread, as well as targeted protective strategies that can help shape the outcome of the present and future health crises. Greece is used as a model to inhibit SARS-COV-2 spread, since it is one of the countries with the lowest fatality rates among nations of the European Union (E.U.), following two consecutive waves of COVID-19 pandemic. Furthermore, niche research technological approaches and scientific recommendations that emerged during the COVID-19 era are discussed.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Diseases, Emerging/prevention & control , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Female , Geography , Greece/epidemiology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Theoretical , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Young Adult
4.
Cancer Genomics Proteomics ; 16(6): 593-601, 2019.
Article in English | MEDLINE | ID: mdl-31659113

ABSTRACT

BACKGROUND/AIM: Several links between DNA replication, pluripotency and development have been recently identified. The involvement of miRNA in the regulation of cell cycle events and pluripotency factors has also gained attention. MATERIALS AND METHODS: In the present study, we used the g:Profiler platform to analyze transcription factor binding sites, miRNA networks and protein-protein interactions to identify novel links among the aforementioned processes. RESULTS AND CONCLUSION: A complex circuitry between retinoic acid signaling, SWI/SNF components, pluripotency factors including Oct4, Sox2 and Nanog and cell cycle regulators was identified. It is suggested that the DNA replication inhibitor geminin plays a central role in this circuitry.


Subject(s)
Databases, Genetic , Geminin/metabolism , Pluripotent Stem Cells/metabolism , Signal Transduction/drug effects , Tretinoin/pharmacology , Cell Cycle Proteins/metabolism , Humans , MicroRNAs/metabolism
5.
Cancers (Basel) ; 10(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495500

ABSTRACT

It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-ß1 (TGFß-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFß-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs-the most abundant cell population of the tumor microenvironment (TME)-as target cells.

6.
Sci Rep ; 8(1): 4998, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29555945

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

7.
Sci Rep ; 8(1): 423, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323251

ABSTRACT

Solar ultraviolet radiation (UVR)-induced DNA damage has acute, and long-term adverse effects in the skin. This damage arises directly by absorption of UVR, and indirectly via photosensitization reactions. The aim of the present study was to assess the effects of vitamin E on UVAI-induced DNA damage in keratinocytes in vitro. Incubation with vitamin E before UVAI exposure decreased the formation of oxidized purines (with a decrease in intracellular oxidizing species), and cyclobutane pyrimidine dimers (CPD). A possible sunscreening effect was excluded when similar results were obtained following vitamin E addition after UVAI exposure. Our data showed that DNA damage by UVA-induced photosensitization reactions can be inhibited by the introduction of vitamin E either pre- or post-irradiation, for both oxidized purines and CPD (including so-called "dark" CPDs). These data validate the evidence that some CPD are induced by UVAI initially via photosensitization, and some via chemoexcitation, and support the evidence that vitamin E can intervene in this pathway to prevent CPD formation in keratinocytes. We propose the inclusion of similar agents into topical sunscreens and aftersun preparations which, for the latter in particular, represents a means to mitigate on-going DNA damage formation, even after sun exposure has ended.


Subject(s)
DNA Damage/drug effects , Keratinocytes/metabolism , Pyrimidine Dimers/metabolism , Ultraviolet Rays/adverse effects , Vitamin E/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Glutathione/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Oxidative Stress/drug effects , Radiation-Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Sunscreening Agents/pharmacology
8.
Anticancer Res ; 35(4): 1881-916, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25862842

ABSTRACT

AIM: to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. MATERIALS AND METHODS: Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. RESULTS: Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. CONCLUSION: The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets.


Subject(s)
Cell Proliferation/genetics , In Vitro Techniques , Tumor Microenvironment/genetics , Cell Communication/genetics , Cell Survival/genetics , Chromatin/genetics , Coculture Techniques , Fibroblasts/metabolism , Fibroblasts/pathology , HeLa Cells , Humans , Stromal Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...