Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 6(3): 263-272, 2022 03.
Article in English | MEDLINE | ID: mdl-35145267

ABSTRACT

Origins of higher taxonomic groups entail dramatic and nearly simultaneous changes in morphology and ecological function, limiting our ability to disentangle the drivers of evolutionary diversification. Here we phylogenetically compare the anatomy and life habits of Cambrian-Ordovician echinoderms to test which facet better facilitates future success. Rates of morphological evolution are faster and involve more volatile trait changes, allowing morphological disparity to accrue faster and earlier in the Cambrian. However, persistent life-habit evolution throughout the early Palaeozoic, combined with iterative functional convergence within adaptive strategies, results in major expansion of ecospace and functional diversity. The interactions between tempo, divergence and convergence demonstrate not only that anatomical novelty precedes ecological success, but also that ecological innovation is constrained, even during a phylum's origin.


Subject(s)
Biological Evolution , Fossils , Animals , Biodiversity , Echinodermata
2.
Curr Biol ; 30(9): 1672-1679.e3, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32197083

ABSTRACT

Quantifying morphological evolution is key to determining the patterns and processes underlying the origin of phyla. We constructed a hierarchical morphological character matrix to characterize the radiation and establishment of echinoderm body plans during the early Paleozoic. This showed that subphylum-level clades diverged gradually through the Cambrian, and the distinctiveness of the resulting body plans was amplified by the extinction of transitional forms and obscured by convergent evolution during the Ordovician. Higher-order characters that define these body plans were not fixed at the origin of the phylum, countering hypotheses regarding developmental processes governing the early evolution of animals. Instead, these burdened characters were flexible, enabling continued evolutionary innovation throughout the clades' history.


Subject(s)
Biological Evolution , Body Patterning/genetics , Echinodermata/anatomy & histology , Echinodermata/classification , Animals , Fossils
3.
Proc Natl Acad Sci U S A ; 115(38): E8909-E8918, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181261

ABSTRACT

The animal kingdom exhibits a great diversity of organismal form (i.e., disparity). Whether the extremes of disparity were achieved early in animal evolutionary history or clades continually explore the limits of possible morphospace is subject to continuing debate. Here we show, through analysis of the disparity of the animal kingdom, that, even though many clades exhibit maximal initial disparity, arthropods, chordates, annelids, echinoderms, and mollusks have continued to explore and expand the limits of morphospace throughout the Phanerozoic, expanding dramatically the envelope of disparity occupied in the Cambrian. The "clumpiness" of morphospace occupation by living clades is a consequence of the extinction of phylogenetic intermediates, indicating that the original distribution of morphologies was more homogeneous. The morphological distances between phyla mirror differences in complexity, body size, and species-level diversity across the animal kingdom. Causal hypotheses of morphologic expansion include time since origination, increases in genome size, protein repertoire, gene family expansion, and gene regulation. We find a strong correlation between increasing morphological disparity, genome size, and microRNA repertoire, but no correlation to protein domain diversity. Our results are compatible with the view that the evolution of gene regulation has been influential in shaping metazoan disparity whereas the invasion of terrestrial ecospace appears to represent an additional gestalt, underpinning the post-Cambrian expansion of metazoan disparity.


Subject(s)
Biodiversity , Biological Evolution , Gene Expression Regulation/physiology , Genome Size/physiology , MicroRNAs/physiology , Animals , Fossils , Proteins/genetics
4.
PLoS One ; 8(11): e77989, 2013.
Article in English | MEDLINE | ID: mdl-24244284

ABSTRACT

The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for exploring branching order among stem groups on the echinoderm tree of life.


Subject(s)
Echinodermata/anatomy & histology , Echinodermata/classification , Fossils , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...