Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 17: 1200360, 2023.
Article in English | MEDLINE | ID: mdl-37361995

ABSTRACT

Neural stem cells (NSCs) persist in specific brain germinative niches and sustain neurogenesis throughout life in adult mammals. In addition to the two major stem cell niches in the subventricular zone and the hippocampal dentate gyrus, the area postrema located in the brainstem has been identified as a neurogenic zone as well. NSCs are regulated by signals from the microenvironment that adjust stem cell response to the needs of the organism. Evidence accumulated over the past decade indicates that Ca2+ channels play pivotal functions in NSC maintenance. In this study, we explored in area postrema NSCs the presence and roles of a subset of Ca2+ channels, the store-operated Ca2+ channels (SOCs) that have the capacity to transduce extracellular signals into Ca2+ signals. Our data show that NSCs derived from the area postrema express TRPC1 and Orai1, known to form SOCs, as well as their activator STIM1. Ca2+ imaging indicated that NSCs exhibit store-operated Ca2+ entries (SOCEs). Pharmacological blockade of SOCEs with SKF-96365, YM-58483 (also known as BTP2) or GSK-7975A resulted in decreased NSC proliferation and self-renewal, indicating a major role for SOCs in maintaining NSC activity within the area postrema. Furthermore, our results show that leptin, an adipose tissue-derived hormone whose ability to control energy homeostasis is dependent on the area postrema, decreased SOCEs and reduced self-renewal of NSCs in the area postrema. As aberrant SOC function has been linked to an increasing number of diseases, including brain disorders, our study opens new perspectives for NSCs in brain pathophysiology.

2.
Cancers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298643

ABSTRACT

Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.

3.
Front Cell Neurosci ; 14: 600018, 2020.
Article in English | MEDLINE | ID: mdl-33281564

ABSTRACT

The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.

4.
Oncotarget ; 9(41): 26309-26327, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29899861

ABSTRACT

BACKGROUND: Chronic myeloid leukemia (CML) results from hematopoietic stem cell transformation by the bcr-abl chimeric oncogene, encoding a 210 kDa protein with constitutive tyrosine kinase activity. In spite of the efficiency of tyrosine kinase inhibitors (TKI; Imatinib), other strategies are explored to eliminate CML leukemia stem cells, such as calcium pathways. RESULTS: In this work, we showed that Store-Operated Calcium Entry (SOCE) and thrombin induced calcium influx were decreased in Bcr-Abl expressing 32d cells (32d-p210). The 32d-p210 cells showed modified Orai1/STIM1 ratio and reduced TRPC1 expression that could explain SOCE reduction. Decrease in SOCE and thrombin induced calcium entry was associated to reduced Nuclear Factor of Activated T cells (NFAT) nucleus translocation in 32d-p210 cells. We demonstrated that SOCE blockers enhanced cell mobility of 32d-p210 cells and reduced the proliferation rate in both 32d cell lines. TKI treatment slightly reduced the thrombin-induced response, but imatinib restored SOCE to the wild type level. Bcr-Abl is also known to deregulate Protein Kinase C (PKC), which was described to modulate calcium entries. We showed that PKC enhances SOCE and thrombin induced calcium entries in control cells while this effect is lost in Bcr-Abl-expressing cells. CONCLUSION: The tyrosine kinase activity seems to regulate calcium entries probably not directly but through a global cellular reorganization involving a PKC pathway. Altogether, calcium entries are deregulated in Bcr-Abl-expressing cells and could represent an interesting therapeutic target in combination with TKI.

5.
Oncotarget ; 7(24): 36168-36184, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27102434

ABSTRACT

BACKGROUND: Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. RESULTS: In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. CONCLUSIONS: This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC.


Subject(s)
Calcium/metabolism , Cell Movement/physiology , ORAI1 Protein/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , TRPC Cation Channels/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Movement/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , ErbB Receptors/metabolism , Glycolipids/pharmacology , HCT116 Cells , Humans , Immunoblotting , Membrane Microdomains/metabolism , Multiprotein Complexes/metabolism , Potassium Channel Blockers/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
6.
Biochim Biophys Acta ; 1848(10 Pt B): 2512-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26072287

ABSTRACT

The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/genetics , Calcium/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Transient Receptor Potential Channels/metabolism , Calcium Channels/classification , Calcium Channels/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Membrane Potentials , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Transient Receptor Potential Channels/genetics , Tumor Microenvironment
7.
Am J Physiol Cell Physiol ; 304(9): C881-94, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23426965

ABSTRACT

Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/metabolism , Membrane Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Muscular Dystrophy, Duchenne/metabolism , TRPV Cation Channels/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Calcium Channels/metabolism , Cells, Cultured , Estrenes/pharmacology , Gadolinium/pharmacology , Gene Expression , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Maleimides/pharmacology , Membrane Proteins/genetics , Muscular Dystrophy, Duchenne/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nifedipine/pharmacology , ORAI1 Protein , Patch-Clamp Techniques , Primary Cell Culture , Protein Kinase C/metabolism , Pyrrolidinones/pharmacology , Sarcoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Type C Phospholipases/metabolism
8.
Cell Calcium ; 52(6): 445-56, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22938798

ABSTRACT

In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCß are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.


Subject(s)
Calcium/metabolism , Dystrophin/metabolism , Muscle Fibers, Skeletal/metabolism , Phospholipase C beta/metabolism , Protein Kinase C/metabolism , Animals , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line , Chelating Agents/pharmacology , Dystrophin/genetics , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Muscle Proteins/metabolism , ORAI1 Protein , Phospholipase C beta/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Stromal Interaction Molecule 1 , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
9.
Urol Res ; 38(4): 271-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20665015

ABSTRACT

Control of phosphate (P(i)) homeostasis is essential for many biologic functions and inappropriate low levels of P(i) in plasma have been suggested to associate with several pathological states, including renal stone formation and stone recurrence. P(i) homeostasis is achieved mainly by adjusting the renal reabsorption of P(i) to the body's requirements. This task is performed to a major extent by the Na/Pi cotransporter NaPi-IIa that is specifically expressed in the brush border membrane of renal proximal tubules. While the presence of tight junctions in epithelial cells prevents the diffusion and mixing of the apical and basolateral components, the location of a protein within a particular membrane subdomain (i.e., the presence of NaPi-IIa at the tip of the apical microvilli) often requires its association with scaffolding elements which directly or indirectly connect the protein with the underlying cellular cytoskeleton. NaPi-IIa interacts with the four members of the Na(+)/H(+) exchanger regulatory factor family as well as with the GABA(A)-receptor associated protein . Here we will discuss the most relevant findings regarding the role of these proteins on the expression and regulation of the cotransporter, as well as the impact that their absence has in P(i) homeostasis.


Subject(s)
Kidney/metabolism , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIa/physiology , Absorption , Animals , Homeostasis , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Models, Biological , PDZ Domains/physiology , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism
10.
Biochem Biophys Res Commun ; 378(3): 360-5, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19013433

ABSTRACT

In this work, we describe how the Erbin PDZ domain interacts with Smad3, a transductor of the Transforming Growth Factor-beta (TGFbeta) pathway, via its MH2 domain. This interaction was described as important for TGFbeta signaling as it could potentially repress the transcriptional activity of the growth factor. In order to clarify our preliminary experimental observations pointing this interaction, we built a 3D model of the Erbin PDZ/Smad3 MH2 complex and checked its stability using molecular dynamics simulations. This model pointed out charged residues in Smad3 and Erbin which could be important for the interaction. By introducing point mutations of these residues within the proposed binding domains, we experimentally confirmed that arginine 279, glutamic acid 246 in Smad3 and glutamic acid 1321 in Erbin are important for the binding. These data suggest a possible novel interface of binding in the Erbin PDZ domain and reveal an unconventional mode of interaction for a PDZ domain and its ligand.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , PDZ Domains , Smad3 Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Arginine/genetics , Arginine/metabolism , Cell Line , Glutamic Acid/genetics , Glutamic Acid/metabolism , Humans , Protein Binding , Protein Interaction Mapping , Smad3 Protein/genetics , Transforming Growth Factor beta/metabolism
11.
J Biol Chem ; 281(12): 7919-26, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16439353

ABSTRACT

Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane. We show here that GIT1, a GTPase-activating protein stimulating GTP hydrolysis on ARF6, is the second molecular partner that turns over the GDP/GTP cycle of ARF6 during cell stimulation. Western blot and immunofluorescence experiments indicated that GIT1 is cytosolic in resting cells but is recruited to the plasma membrane in stimulated cells, where it co-localizes with ARF6 at the granule docking sites. Over-expression of wild-type GIT1 inhibits growth hormone secretion from PC12 cells; this inhibitory effect was not observed in cells expressing a GIT1 mutant impaired in its ARF-GTPase-activating protein (GAP) activity or in cells expressing other ARF6-GAPs. Conversely reduction of GIT1 by RNA interference increased the exocytotic activity. Using a real time assay for individual chromaffin cells, we found that microinjection of GIT1 strongly reduced the number of exocytotic events. These results provide the first evidence that GIT1 plays a function in calcium-regulated exocytosis in neuroendocrine cells. We propose that GIT1 represents part of the pathway that inactivates ARF6-dependent reactions and thereby negatively regulates and/or terminates exocytotic release.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation , Neurosecretory Systems/metabolism , Phosphoproteins/metabolism , ADP-Ribosylation Factor 6 , Animals , Blotting, Western , Catecholamines/metabolism , Cell Membrane/metabolism , Chromaffin Cells/metabolism , Cytosol/metabolism , DNA/chemistry , Electrochemistry , Exocytosis , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Hydrolysis , Microscopy, Fluorescence , Neuropeptides/chemistry , PC12 Cells , Protein Binding , Protein Transport , RNA Interference , Rats , Time Factors , Transfection
12.
Am J Physiol Cell Physiol ; 289(1): C159-67, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15788483

ABSTRACT

The type IIa Na+-P(i) cotransporter (NaP(i)-IIa) and the Na+/H+ exchanger regulatory factor-1 (NHERF1) colocalize in the apical membrane of proximal tubular cells. Both proteins interact in vitro. Herein the interaction between NaP(i)-IIa and NHERF1 is further documented on the basis of coimmunoprecipitation and co-pull-down assays. NaP(i)-IIa is endocytosed and degraded in lysosomes upon parathyroid hormone (PTH) treatment. To investigate the effect of PTH on the NaP(i)-IIa-NHERF1 association, we first compared the localization of both proteins after PTH treatment. In mouse proximal tubules and OK cells, NaP(i)-IIa was removed from the apical membrane after hormonal treatment; however, NHERF1 remained at the membrane. Moreover, PTH treatment led to degradation of NaP(i)-IIa without changes in the amount of NHERF1. The effect of PTH on the NaP(i)-IIa-NHERF1 interaction was further studied using coimmunoprecipitation. PTH treatment reduced the amount of NaP(i)-IIa coimmunoprecipitated with NHERF antibodies. PTH-induced internalization of NaP(i)-IIa requires PKA and PKC; therefore, we next analyzed whether PTH induces changes in the phosphorylation state of either partner. NHERF1 was constitutively phosphorylated. Moreover, in mouse kidney slices, PTH induced an increase in NHERF1 phosphorylation; independent activation of PKA or PKC also resulted in increased phosphorylation of NHERF1 in kidney slices. However, NaP(i)-IIa was not phosphorylated either basally or after exposure to PTH. Our study supports an interaction between NHERF1 and NaP(i)-IIa on the basis of their brush-border membrane colocalization and in vitro coimmunoprecipitation/co-pull-down assays. Furthermore, PTH weakens this interaction as evidenced by different in situ and in vivo behavior. The PTH effect takes place in the presence of increased phosphorylation of NHERF1.


Subject(s)
Parathyroid Hormone/pharmacology , Phosphoproteins/metabolism , Symporters/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Epithelium/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Mice, Inbred Strains , Opossums , Phosphorylation , Sodium-Hydrogen Exchangers/metabolism , Sodium-Phosphate Cotransporter Proteins , Sodium-Phosphate Cotransporter Proteins, Type IIa , Tissue Distribution
13.
Proc Natl Acad Sci U S A ; 99(18): 11957-62, 2002 Sep 03.
Article in English | MEDLINE | ID: mdl-12192091

ABSTRACT

Type IIa Na/P(i) cotransporters are expressed in renal proximal brush border and are the major determinants of inorganic phosphate (P(i)) reabsorption. Their carboxyl-terminal tail contains information for apical expression, and interacts by means of its three terminal amino acids with several PSD95/DglA/ZO-1-like domain (PDZ)-containing proteins. Two of these proteins, NaPi-Cap1 and Na/H exchanger-regulatory factor 1 (NHERF1), colocalize with the cotransporter in the proximal brush border. We used opossum kidney cells to test the hypothesis of a potential role of PDZ-interactions on the apical expression of the cotransporter. We found that opossum kidney cells contain NaPi-Cap1 and NHERF1 mRNAs. For NHERF1, an apical location of the protein could be documented; this location probably reflects interaction with the cytoskeleton by means of the MERM-binding domain. Overexpression of PDZ domains involved in interaction with the cotransporter (PDZ-1/NHERF1 and PDZ-3/NaPi-Cap1) had a dominant-negative effect, disturbing the apical expression of the cotransporter without affecting the actin cytoskeleton or the basolateral expression of Na/K-ATPase. These data suggest an involvement of PDZ-interactions on the apical expression of type IIa cotransporters.


Subject(s)
Symporters/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Blotting, Northern , Blotting, Western , Cell Line , Phosphoproteins/metabolism , Protein Binding , Sodium-Hydrogen Exchangers , Sodium-Phosphate Cotransporter Proteins , Symporters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...