Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(7): 101619, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38897206

ABSTRACT

Liver-directed adeno-associated viral (AAV) vector-mediated homology-independent targeted integration (AAV-HITI) by CRISPR-Cas9 at the highly transcribed albumin locus is under investigation to provide sustained transgene expression following neonatal treatment. We show that targeting the 3' end of the albumin locus results in productive integration in about 15% of mouse hepatocytes achieving therapeutic levels of systemic proteins in two mouse models of inherited diseases. We demonstrate that full-length HITI donor DNA is preferentially integrated upon nuclease cleavage and that, despite partial AAV genome integrations in the target locus, no gross chromosomal rearrangements or insertions/deletions at off-target sites are found. In line with this, no evidence of hepatocellular carcinoma is observed within the 1-year follow-up. Finally, AAV-HITI is effective at vector doses considered safe if directly translated to humans providing therapeutic efficacy in the adult liver in addition to newborn. Overall, our data support the development of this liver-directed AAV-based knockin strategy.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Vectors , Liver , Animals , Dependovirus/genetics , Liver/metabolism , Liver/pathology , Mice , Genetic Vectors/genetics , Hepatocytes/metabolism , Humans , Virus Integration/genetics , CRISPR-Cas Systems/genetics , Transgenes , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Mice, Inbred C57BL , Albumins/genetics , Albumins/metabolism
2.
Mol Ther Methods Clin Dev ; 28: 396-411, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36910588

ABSTRACT

Gene therapy of Usher syndrome type 1B (USH1B) due to mutations in the large Myosin VIIA (MYO7A) gene is limited by the packaging capacity of adeno-associated viral (AAV) vectors. To overcome this, we have previously developed dual AAV8 vectors which encode human MYO7A (dual AAV8.MYO7A). Here we show that subretinal administration of 1.37E+9 to 1.37E+10 genome copies of a good-manufacturing-practice-like lot of dual AAV8.MYO7A improves the retinal defects of a mouse model of USH1B. The same lot was used in non-human primates at doses 1.6× and 4.3× the highest dose proposed for the clinical trial which was based on mouse efficacy data. Long-lasting alterations in retinal function and morphology were observed following subretinal administration of dual AAV8.MYO7A at the high dose. These findings were modest and improved over time in the low-dose group, as also observed in other studies involving the use of AAV8 in non-human primates and humans. Biodistribution and shedding studies confirmed the presence of vector DNA mainly in the visual pathway. Accordingly, we detected human MYO7A mRNA expression predominantly in the retina. Overall, these studies pave the way for the clinical translation of subretinal administration of dual AAV vectors in USH1B subjects.

3.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36647689

ABSTRACT

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Subject(s)
Gyrate Atrophy , Retinal Degeneration , Animals , Mice , Gyrate Atrophy/genetics , Gyrate Atrophy/pathology , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Ornithine/genetics , Ornithine/metabolism , Genetic Therapy , Liver/pathology
4.
Sci Transl Med ; 11(492)2019 05 15.
Article in English | MEDLINE | ID: mdl-31092694

ABSTRACT

Retinal gene therapy with adeno-associated viral (AAV) vectors holds promises for treating inherited and noninherited diseases of the eye. Although clinical data suggest that retinal gene therapy is safe and effective, delivery of large genes is hindered by the limited AAV cargo capacity. Protein trans-splicing mediated by split inteins is used by single-cell organisms to reconstitute proteins. Here, we show that delivery of multiple AAV vectors each encoding one of the fragments of target proteins flanked by short split inteins results in protein trans-splicing and full-length protein reconstitution in the retina of mice and pigs and in human retinal organoids. The reconstitution of large therapeutic proteins using this approach improved the phenotype of two mouse models of inherited retinal diseases. Our data support the use of split intein-mediated protein trans-splicing in combination with AAV subretinal delivery for gene therapy of inherited blindness due to mutations in large genes.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Inteins , Retina/virology , Trans-Splicing/genetics , Animals , Genetic Vectors/administration & dosage , Genetic Vectors/metabolism , Green Fluorescent Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Organoids/ultrastructure , Organoids/virology , Phenotype , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/virology , Swine
5.
Hum Gene Ther ; 29(8): 886-901, 2018 08.
Article in English | MEDLINE | ID: mdl-29641320

ABSTRACT

Retinal gene therapy based on adeno-associated viral (AAV) vectors is safe and efficient in humans. The low intrinsic DNA transfer capacity of AAV has been expanded by dual vectors where a large expression cassette is split in two halves independently packaged in two AAV vectors. Dual AAV transduction efficiency, however, is greatly reduced compared to that obtained with a single vector. As AAV intracellular trafficking and processing are negatively affected by phosphorylation, this study set to identify kinase inhibitors that can increase dual AAV vector transduction. By high-throughput screening of a kinase inhibitors library, three compounds were identified that increase AAV transduction in vitro, one of which has a higher effect on dual than on single AAV vectors. Importantly, the transduction enhancement is exerted on various AAV serotypes and is not transgene dependent. As kinase inhibitors are promiscuous, siRNA-mediated silencing of targeted kinases was performed, and AURKA and B, PLK1, and PTK2 were among those involved in the increase of AAV transduction levels. The study shows that kinase inhibitor administration reduces AAV serotype 2 (AAV2) capsid phosphorylation and increases the activity of DNA-repair pathways involved in AAV DNA processing. Importantly, the kinase inhibitor PF-00562271 improves dual AAV8 transduction in photoreceptors following sub-retinal delivery in mice. The study identifies kinase inhibitors that increase dual and single AAV transduction by modulating AAV entry and post-entry steps.


Subject(s)
Genetic Therapy , Genetic Vectors/drug effects , Protein Kinase Inhibitors/administration & dosage , Retina/metabolism , Transduction, Genetic , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Dependovirus/genetics , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation/drug effects , Genetic Vectors/therapeutic use , High-Throughput Screening Assays , Humans , Mice , Photoreceptor Cells/drug effects , Photoreceptor Cells/virology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Retina/pathology , Retina/virology , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...