Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423131

ABSTRACT

The meagre, Argyrosomus regius, is a valued fish species of which aquaculture production might be supported by the development of a stem germ cell xenotransplantation technology. Meagre males were sampled at a fish farm in the Ionian Sea (Italy) at the beginning and end of the reproductive season. Small and large Type A undifferentiated spermatogonia were histologically identified in the germinal epithelium. Among the tested stemness markers, anti-oct4 and anti-vasa antibodies labeled cells likely corresponding to the small single Type A spermatogonia; no labeling was obtained with anti-GFRA1 and anti-Nanos2 antibodies. Two types of single A spermatogonia were purified via density gradient centrifugation of enzymatically digested testes. Testes from fish in active spermatogenesis resulted in a more efficient spermatogonial stem cell (SSC) yield. After cell seeding, meagre SSCs showed active proliferation from Day 7 to Day 21 and were cultured up to Day 41. After cryopreservation in dimethyl-sulfoxide-based medium, cell viability was 28.5%. In conclusion, these results indicated that meagre SSCs could be isolated, characterized, cultured in vitro, successfully cryopreserved, and used after thawing. This is a first step towards the development of a xenotransplantation technology that might facilitate the reproduction of this valuable species in captivity.

2.
Mol Reprod Dev ; 86(10): 1388-1404, 2019 10.
Article in English | MEDLINE | ID: mdl-31025442

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with endocrine-disrupting properties. In this study, we used an equine model to investigate DEHP concentrations in ovarian follicular fluid (FF), and to determine the effects of exposure of oocytes to potentially toxic concentrations of DEHP during in vitro maturation (IVM) on embryo development and quality. Embryo development was evaluated using time-lapse monitoring (TLM), a photomicroscopic tool that reveals abnormalities in cleavage kinetics unobservable by conventional morphology assessment. Blastocyst bioenergetic/oxidative status was assessed by confocal analysis. The possibility that verbascoside (VB), a bioactive polyphenol with antioxidant activity, could counteract DEHP-induced oocyte oxidative damage, was investigated. DEHP was detected in FF and in IVM media at concentrations up to 60 nM. Culture of oocytes in the presence of 500 nM DEHP delayed second polar body extrusion, reduced duration of the second cell cycle, and increased the percentage of embryos showing abrupt multiple cleavage, compared with controls. Mitochondrial activity and intracellular levels of reactive oxygen species were reduced in blastocysts from DEHP-exposed oocytes. VB addition during IVM limited DEHP-induced blastocyst damage. In conclusion, DEHP is detectable in equine FF and culture medium, and oocyte exposure to increased concentrations of DEHP during IVM affects preimplantation embryo development. Moreover, TLM, reported for the first time in the horse in this study, is an efficient tool for identifying altered morphokinetic parameters and cleavage abnormalities associated with exposure to toxic compounds.


Subject(s)
Diethylhexyl Phthalate/toxicity , Embryo, Mammalian , In Vitro Oocyte Maturation Techniques , Oocytes/drug effects , Animals , Blastocyst/drug effects , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/pathology , Embryo, Mammalian/physiopathology , Female , Horses , Male , Sperm Injections, Intracytoplasmic
3.
Reprod Biol Endocrinol ; 13: 22, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25889099

ABSTRACT

BACKGROUND: The ability to cryopreserve mammalian embryos has become an integral part of assisted reproduction, both in human and veterinary medicine. Despite differences in the size and physiological characteristics of embryos from various species, the embryos have been frozen by either of two procedures: slow freezing or vitrification. The aim of our study was to compare the effect of slow freezing and vitrification to the chromatin structure, energy status and reactive oxygen species production of mouse morulae and blastocysts. METHODS: Mouse morulae and blastocysts were randomly allocated into vitrification, slow freezing and control groups. For slow freezing, Dulbecco phosphate buffered saline based 10% glicerol solution was used. For vitrification, G-MOPS™ based solution supplemented with 16% ethylene glycol, 16% propylene glycol, Ficoll (10 mg/ml) and sucrose (0.65 mol/l) was used. After warming, the chromatin integrity, mitochondrial distribution pattern and energy/oxidative status were compared among groups. RESULTS: Cryopreservation affected chromatin integrity at a greater extent at the morula than the blastocyst stage. Chromatin damage induced by slow freezing was more relevant compared to vitrification. Slow freezing and vitrification similarly affected mitochondrial distribution pattern. Greater damage was observed at the morula stage and it was associated with embryo grade. Cryopreservation altered the quantitative bioenergy/redox parameters at a greater extent in the morulae than in the blastocysts. Effects induced by slow freezing were not related to embryo grade or mitochondrial pattern, as affected embryos were of all grades and with both mitochondrial patterns. However, effects induced by vitrification were related to mitochondrial pattern, as only embryos with homogeneous mitochondrial pattern in small aggregates had reduced energy status. CONCLUSIONS: This study shows for the first time the joint assessment of chromatin damage and mitochondrial energy/redox potential in fresh and frozen mouse embryos at the morula and blastocyst stage, allowing the comparison of the effects of the two most commonly used cryopreservation procedures.


Subject(s)
Blastocyst/physiology , Chromatin/metabolism , Cryopreservation/methods , Morula/physiology , Animals , Blastocyst/metabolism , Chromatin/physiology , Embryo, Mammalian/metabolism , Embryo, Mammalian/physiology , Female , Freezing , Mice , Mitochondria/metabolism , Mitochondria/physiology , Morula/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Vitrification
4.
Reprod Biol Endocrinol ; 12: 99, 2014 Oct 11.
Article in English | MEDLINE | ID: mdl-25306508

ABSTRACT

BACKGROUND: Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. METHODS: Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. RESULTS: EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression of mitochondrial distribution pattern and there were no significant differences in oocyte energy/redox parameters between these oocytes and controls. CONCLUSIONS: Mitochondrial distribution in equine GV-stage oocytes is correlated with chromatin configuration within the GV. Progression of chromatin configuration and mitochondrial status during holding are dependent on temperature. EH holding at 25°C maintains meiotic arrest, viability and mitochondrial potential of equine oocytes. This is the first report on the effects of EH treatment on oocyte mitochondrial energy/redox potential.


Subject(s)
Chromatin Assembly and Disassembly , Energy Metabolism , Horses/physiology , Meiosis , Mitochondria/metabolism , Oocytes/cytology , Reactive Oxygen Species/metabolism , Abattoirs , Animals , Cell Survival , Cold Temperature/adverse effects , Culture Media , Female , In Vitro Oocyte Maturation Techniques/veterinary , Microscopy, Confocal/veterinary , Microscopy, Fluorescence/veterinary , Oocytes/metabolism , Oogenesis , Oxidation-Reduction
5.
Reprod Biol Endocrinol ; 12: 16, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24548378

ABSTRACT

BACKGROUND: Reproductive biotechnologies in dromedary camel (Camelus dromedarius) are less developed than in other livestock species. The in vitro maturation (IVM) technology is a fundamental step for in vitro embryo production (IVP), and its optimization could represent a way to increase the success rate of IVP. The aim of the present study was to investigate the bioenergy/oxidative status of dromedary camel oocytes before and after IVM by confocal microscopy 3D imaging. METHODS: Oocytes were retrieved by slicing ovaries collected at local slaughterhouses. Recovered oocytes were examined before and after IVM culture for nuclear chromatin configuration and bioenergy/oxidative status, expressed as mitochondria (mt) distribution and activity, intracellular Reactive Oxygen Species (ROS) levels and distribution and mt/ROS colocalization. RESULTS: The mean recovery rate was 6 oocytes/ovary. After IVM, 61% of oocytes resumed meiosis and 36% reached the Metaphase II stage (MII). Oocyte bioenergy/redox confocal characterization revealed changes upon meiosis progression. Immature oocytes at the germinal vesicle (GV) stage were characterised by prevailing homogeneous mt distribution in small aggregates while MI and MII oocytes showed significantly higher rates of pericortical mt distribution organized in tubular networks (P<0.05). Increased mt activity in MI (P<0.001) and MII (P<0.01) oocytes compared to GV stage oocytes was also observed. At any meiotic stage, homogeneous distribution of intracellular ROS was observed. Intracellular ROS levels also increased in MI (P<0.01) and MII (P<0.05) oocytes compared to GV stage oocytes. The mt/ROS colocalization signal increased in MI oocytes (P<0.05). CONCLUSIONS: This study provides indications that qualitative and quantitative indicators of bioenergy and oxidative status in dromedary camel oocytes are modified in relation with oocyte meiotic stage. These data may increase the knowledge of camel oocyte physiology, in order to enhance the efficiency of IVP procedures.


Subject(s)
Energy Metabolism/physiology , Oocytes/growth & development , Oocytes/metabolism , Animals , Camelus , Female , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Oocyte Retrieval/methods , Oxidation-Reduction , Reactive Oxygen Species/metabolism
6.
Reprod Biol Endocrinol ; 11: 27, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23552480

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the effects of vitrification on morpho-functional parameters (blastomere/chromatin integrity and bioenergy/oxidative potential) of mouse preimplantation embryos. METHODS: In vivo produced mouse (4/16-cell, morulae and blastocyst-stage) embryos were randomly divided into vitrification and control groups. For vitrification, embryos were exposed to a 2-step loading of ethylene glycol and propylene glycol, before being placed in a small nylon loop and submerged into liquid nitrogen. After warming, the cryoprotectants were diluted by a 3-step procedure. Embryo morphology, chromatin integrity and energy/oxidative status were compared between groups. RESULTS: Vitrification induced low grade blastomere cytofragmentation (P < 0.05) and low chromatin damage only in embryos at the morula stage (P < 0.001). Mitochondrial (mt) distribution pattern was affected by vitrification only in early embryos (P < 0.001). Mitochondrial activity did not change upon vitrification in morula-stage embryos but it was reduced in blastocyst-stage embryos (P < 0.05). Intracellular ROS levels significantly increased in embryos at the morula and blastocyst stages (P < 0.001). Colocalization of active mitochondria and ROS increased only in vitrified blastocysts. CONCLUSIONS: In conclusion, this study elucidates the developmentally-related and mild effects of vitrification on morphology, nuclear and bioenergy/oxidative parameters of mouse embryos and demonstrates that vitrification is a suitable method for preserving predictive parameters of embryo ability to induce a full-term pregnancy.


Subject(s)
Chromatin/metabolism , Cryopreservation/methods , Embryo, Mammalian/metabolism , Energy Metabolism , Vitrification , Animals , Blastocyst/cytology , Blastocyst/drug effects , Blastocyst/metabolism , Chromatin/genetics , Cryoprotective Agents/pharmacology , Embryo, Mammalian/cytology , Ethylene Glycol/pharmacology , Female , Male , Mice , Mitochondria/metabolism , Morula/cytology , Morula/drug effects , Morula/metabolism , Oxidation-Reduction , Pregnancy , Propylene Glycol/pharmacology , Reactive Oxygen Species/metabolism , Reproducibility of Results
7.
Reprod Fertil Dev ; 25(5): 837-46, 2013.
Article in English | MEDLINE | ID: mdl-22951190

ABSTRACT

There is no published information about follicular-fluid leptin concentrations or the presence of leptin and leptin receptor in the equine ovary or oocyte. Three groups of mares - adult draft mares, draft fillies and adult Standardbred mares - were included in the study. Leptin and leptin receptor were detected in all immature oocytes by immunofluorescence with higher intensity in oocytes from draft mares compared with draft fillies and Standardbred mares. After in vitro maturation a higher proportion of oocytes reached metaphase II in draft mares than in draft fillies and Standardbred mares, and in all groups both leptin and leptin receptor became localised in the oocyte cortex but with higher immunopositivity in draft mares compared with draft fillies and Standardbred mares. These intensities were confirmed by the expression profiles of leptin and leptin receptor mRNA. Moreover, leptin was detected in ovarian blood vessels in all three types of animal and within the corpora lutea in adult mares. Serum and follicular-fluid concentrations of leptin were similar in draft and Standardbred mares but higher in draft mares than in draft fillies. This study supports the hypothesis that expression of leptin and leptin receptor mRNA and the rate of maturation can be related either to adiposity or to puberty.


Subject(s)
Follicular Fluid/metabolism , Horses/metabolism , Leptin/metabolism , Oocytes/metabolism , Ovary/metabolism , Receptors, Leptin/metabolism , Adipose Tissue/metabolism , Animals , DNA Primers/genetics , Female , Fluorescent Antibody Technique/veterinary , Gene Expression Profiling/veterinary , Immunohistochemistry/veterinary , Leptin/blood , Sexual Maturation/physiology , Species Specificity
8.
FASEB J ; 24(10): 3903-15, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20547664

ABSTRACT

Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires membrane and released proteases focalized at membrane structures called invadopodia. While extracellular acidification is important in driving tumor invasion, the structure/function mechanisms underlying this regulation are still unknown. Invadopodia are similar in structure and function to osteoclast podosomes responsible for bone degradation, and extracellular acidification is central to podosome action, suggesting that it could also be for invadopodial function. Here, utilizing a novel system for in situ zymography in native matrices, we show that the Na(+)/H(+) exchanger (NHE1) and NHE1-generated extracellular acidification are localized at and necessary for invadopodial-dependent ECM degradation, thereby promoting tumor invasion. Stimulation with EGF increased both NHE1-dependent proton secretion and ECM degradation. Manipulation of the NHE1 expression by RNA interference or activity via either transport-deficient mutation or the specific inhibitor cariporide confirmed that NHE1 expression and activity are required for invadopodia-mediated ECM degradation. Taken together, our data show a concordance among NHE1 localization, the generation of a well-defined acidic extracellular pH in the nanospace surrounding invadopodia, and matrix-degrading activity at invadopodia of human malignant breast carcinoma cells, providing a structural basis for the role of NHE1 in invasion and identifying NHE1 as a strategic target for therapeutic intervention.


Subject(s)
Sodium-Hydrogen Exchangers/physiology , Animals , Extracellular Matrix/metabolism , Guinea Pigs , Humans , Hydrolysis
9.
Mol Biol Cell ; 18(5): 1768-80, 2007 May.
Article in English | MEDLINE | ID: mdl-17332506

ABSTRACT

Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling.


Subject(s)
Breast Neoplasms/metabolism , Cation Transport Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Hypoxia/metabolism , In Vitro Techniques , Middle Aged , Neoplasm Invasiveness , Phosphoproteins/chemistry , Prognosis , Protein Structure, Tertiary , Pseudopodia/metabolism , Pseudopodia/pathology , Signal Transduction , Sodium-Hydrogen Exchanger 1 , Sodium-Hydrogen Exchangers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...