Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543267

ABSTRACT

Recent advances in comprehending the essential molecular mechanisms that govern cancer signaling have revealed the pivotal involvement of kinases in the development and progression of various cancer types [...].

2.
Infect Agent Cancer ; 18(1): 62, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848958

ABSTRACT

SARS-CoV-2 vaccination is strongly recommended, particularly for fragile patients such as those undergoing active oncological treatments. It is crucial to conduct post-marketing surveillance in this patient population. In our study, we conducted a retrospective analysis of real-world data, including 136 patients who received SARS-CoV-2 vaccines and were undergoing anticancer treatments between March 1st and June 30th, 2021. All patients received mRNA vaccines, namely Pfizer-BioNTech's COMIRNATY (BNT162b2 mRNA) and Moderna's mRNA-1273 COVID-19 vaccines. We collected blood samples from the patients one week to 10 days before and after vaccine administration to assess full blood count with white cell differentials. Additionally, we monitored serology titers to detect any previous SARS-CoV-2 infection before hospital admission and tracked changes over time. Our findings revealed a significant occurrence of leukopenia following both the first and second vaccine doses among patients receiving chemotherapy and chemo-immunotherapy. Importantly, this effect was independent of demographic factors such as sex, age, and Body Mass Index. In the chemo-immunotherapy treated group, we observed that concomitant immune-mediated diseases were significantly associated with leukopenia following the second vaccine dose. Notably, in healthy subjects, transient neutropenia was recognized as an adverse event following vaccination. The observed lymphocytopenia during SARS-CoV-2 infection, combined with the impact on leukocyte counts observed in our study, underscores the need for larger post-marketing surveillance studies. Despite a treatment delay occurring in 6.6% of patients, the administration of mRNA vaccines did not have a significant impact on the treatment schedule in our series. These findings from a real-world setting provide valuable insights and suggest avenues for further prospective studies to explore potential complex interactions specific to this patient population.

3.
J Exp Clin Cancer Res ; 42(1): 134, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37231503

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. METHODS: RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. RESULTS: Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. CONCLUSION: Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Receptors, Purinergic P2X4/metabolism , Calcium/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Mitochondria/metabolism , Cell Line, Tumor
4.
Clin Epigenetics ; 15(1): 76, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143127

ABSTRACT

The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.


Subject(s)
DNA Methylation , Infertility, Female , Pregnancy , Female , Humans , Aged , Pregnancy Rate , Fertilization in Vitro/adverse effects , Infertility, Female/genetics , Infertility, Female/therapy , Fertility
6.
Methods Mol Biol ; 2595: 49-64, 2023.
Article in English | MEDLINE | ID: mdl-36441453

ABSTRACT

MicroRNA (miRNA) expression profiling is an important tool to identify miRNA regulation in physiological or pathological states. This technique has a large number of molecular diagnostic applications, including cancer, cardiovascular and autoimmune diseases, and forensics. To date, a multitude of high-throughput genomic approaches have been developed. Here, we focus on miRNA expression profiling by microarray using SurePrint technology, providing a description of both the workflow and methods for expression profiling by Agilent One-Color Microarray.


Subject(s)
Autoimmune Diseases , MicroRNAs , Humans , Microarray Analysis , Genomics , MicroRNAs/genetics , Technology
7.
Methods Mol Biol ; 2595: 75-92, 2023.
Article in English | MEDLINE | ID: mdl-36441455

ABSTRACT

Exosomes are extracellular vesicles secreted by cells with a key role in a wide range of biological processes including cancer. These vesicles are involved in intercellular communication and deliver diverse cargo molecules, including miRNAs (exo-miRNAs), to recipient cells affecting their physiology. Exo-miRNAs have a role in promoting tumor, progression, metastatization, and remodeling of tumor microenvironment, therefore making them interesting biomarkers to study.Here we provide a detailed technical protocol for exosome isolation (which can be applied to cell culture as well as physiological fluids), validation of their vesicular identity, miRNA extraction, and quantitative and qualitative analysis to evaluate the sample purity and concentration.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Exosomes/genetics , MicroRNAs/genetics , Cell Communication , Tumor Microenvironment
8.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201480

ABSTRACT

The application of doxorubicin (DOX) is hampered by cardiotoxicity, with diastolic dysfunction as the earliest manifestation. Fibrosis leads to impaired relaxation, but the mechanisms that operate shortly after DOX exposure are not clear. We asked whether the activation of cardiac fibroblasts (CFs) anticipates myocardial dysfunction and evaluated the effects of DOX on CF metabolism. CFs were isolated from the hearts of rats after the first injection of DOX. In another experiment, CFs were exposed to DOX in vitro. Cell phenotype and metabolism were determined. Early effects of DOX consisted of diastolic dysfunction and unchanged ejection fraction. Markers of pro-fibrotic remodeling and evidence of CF transformation were present immediately after treatment completion. Oxygen consumption rate and extracellular acidification revealed an increased metabolic activity of CFs and a switch to glycolytic energy production. These effects were consistent in CFs isolated from the hearts of DOX-treated animals and in naïve CFs exposed to DOX in vitro. The metabolic switch was paralleled with the phenotype change of CFs that upregulated markers of myofibroblast differentiation and the activation of pro-fibrotic signaling. In conclusion, the metabolic switch and activation of CFs anticipate DOX-induced damage and represent a novel target in the early phase of anthracycline cardiomyopathy.

9.
Mol Cancer ; 21(1): 125, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681235

ABSTRACT

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Subject(s)
Chromatin , Leukemia, Myeloid, Acute , Polycomb Repressive Complex 1 , Chromatin/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Front Bioeng Biotechnol ; 10: 844011, 2022.
Article in English | MEDLINE | ID: mdl-35360403

ABSTRACT

Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm-1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process.

11.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445438

ABSTRACT

Gram-negative bacteria release Outer Membrane Vesicles (OMVs) into the extracellular environment. Recent studies recognized these vesicles as vectors to horizontal gene transfer; however, the parameters that mediate OMVs transfer within bacterial communities remain unclear. The present study highlights for the first time the transfer of plasmids containing resistance genes via OMVs derived from Klebsiella pneumoniae (K. pneumoniae). This mechanism confers DNA protection, it is plasmid copy number dependent with a ratio of 3.6 times among high copy number plasmid (pGR) versus low copy number plasmid (PRM), and the transformation efficiency was 3.6 times greater. Therefore, the DNA amount in the vesicular lumen and the efficacy of horizontal gene transfer was strictly dependent on the identity of the plasmid. Moreover, the role of K. pneumoniae-OMVs in interspecies transfer was described. The transfer ability was not related to the phylogenetic characteristics between the donor and the recipient species. K. pneumoniae-OMVs transferred plasmid to Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and Burkholderia cepacia. These findings address the pivotal role of K. pneumoniae-OMVs as vectors for antimicrobial resistance genes spread, contributing to the development of antibiotic resistance in the microbial communities.


Subject(s)
Cytoplasmic Vesicles/genetics , Gene Transfer, Horizontal , Klebsiella pneumoniae/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Drug Resistance, Bacterial , Gene Dosage , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Phylogeny
12.
Cancers (Basel) ; 13(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535487

ABSTRACT

The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.

13.
Front Cell Dev Biol ; 9: 740203, 2021.
Article in English | MEDLINE | ID: mdl-35096807

ABSTRACT

Maintenance of energy balance between intake and expenditure is a prerequisite of human health, disrupted in severe metabolic diseases, such as obesity and type 2 diabetes (T2D), mainly due to accumulation of white adipose tissue (WAT). WAT undergoes a morphological and energetic remodelling toward brown adipose tissue (BAT) and the BAT activation has anti-obesity potential. The mechanisms or the regulatory factors able to activate BAT thermogenesis have been only partially deciphered. Identifying novel regulators of BAT induction is a question of great importance for fighting obesity and T2D. Here, we evaluated the role of Hif3α in murine pre-adipocyte 3T3-L1 cell line, a versatile and well characterized biological model of adipogenesis, by gain- and loss-of function approaches and in thermogenesis-induced model in vivo. HIF3A is regulated by inflammation, it modulates lypolysis in adipose tissue of obese adults, but its role in energy metabolism has not previously been investigated. We characterized gene and protein expression patterns of adipogenesis and metabolic activity in vitro and mechanistically in vivo. Overexpression of Hif3α in differentiating adipocytes increases white fat cells, whereas silencing of Hif3α promotes "browning" of white cells, activating thermogenesis through upregulation of Ucp1, Elovl3, Prdm16, Dio2 and Ppargc1a genes. Investigating cell metabolism, Seahorse Real-Time Cell Metabolism Analysis showed that silencing of Hif3α resulted in a significant increase of mitochondrial uncoupling with a concomitant increase in acetyl-CoA metabolism and Sirt1 and Sirt3 expression. The causal Hif3α/Ucp1 inverse relation has been validated in Cannabinoid receptor 1 (CB1) knockout, a thermogenesis-induced model in vivo. Our data indicate that Hif3α inhibition triggers "browning" of white adipocytes activating the beneficial thermogenesis rewiring energy metabolism in vitro and in vivo. HIF3A is a novel player that controls the energy metabolism with potential applications in developing therapy to fight metabolic disorders, as obesity, T2D and ultimately cancer.

14.
Microorganisms ; 8(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322147

ABSTRACT

Klebsiella pneumoniae is an opportunistic pathogen that causes nosocomial and community-acquired infections. The spread of resistant strains of K. pneumoniae represents a growing threat to human health, due to the exhaustion of effective treatments. K. pneumoniae releases outer membrane vesicles (OMVs). OMVs are a vehicle for the transport of virulence factors to host cells, causing cell injury. Previous studies have shown changes of gene expression in human bronchial epithelial cells after treatment with K. pneumoniae OMVs. These variations in gene expression could be regulated through microRNAs (miRNAs), which participate in several biological mechanisms. Thereafter, miRNA expression profiles in human bronchial epithelial cells were evaluated during infection with standard and clinical K. pneumoniae strains. Microarray analysis and RT-qPCR identified the dysregulation of miR-223, hsa-miR-21, hsa-miR-25 and hsa-let-7g miRNA sequences. Target gene prediction revealed the essential role of these miRNAs in the regulation of host immune responses involving NF-ĸB (miR-223), TLR4 (hsa-miR-21), cytokine (hsa-miR-25) and IL-6 (hsa-let-7g miRNA) signalling pathways. The current study provides the first large scale expression profile of miRNAs from lung cells and predicted gene targets, following exposure to K. pneumoniae OMVs. Our results suggest the importance of OMVs in the inflammatory response.

15.
Pharmaceutics ; 12(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081417

ABSTRACT

Extracellular vesicles (EVs) are sophisticated and sensitive messengers released by cells to communicate with and influence distant and neighboring cells via selective transfer of bioactive content, including protein lipids and nucleic acids. EVs have therefore attracted broad interest as new and refined potential therapeutic systems in many diseases, including cancer, due to their low immunogenicity, non-toxicity, and elevated bioavailability. They might serve as safe and effective vehicles for the transport of therapeutic molecules to specific tissues and cells. In this review, we focus on EVs as a vehicle for gene therapy in cancer. We describe recent developments in EV engineering to achieve efficient intracellular delivery of cancer therapeutics and avoid off-target effects, to provide an overview of the potential applications of EV-mediated gene therapy and the most promising biomedical advances.

17.
Front Oncol ; 10: 820, 2020.
Article in English | MEDLINE | ID: mdl-32528892

ABSTRACT

The involvement of sirtuins (SIRTs) in modulating metabolic and stress response pathways is attracting growing scientific interest. Some SIRT family members are located in mitochondria, dynamic organelles that perform several crucial functions essential for eukaryotic life. Mitochondrial dysfunction has emerged as having a key role in a number of human diseases, including cancer. Here, we investigated mitochondrial damage resulting from treatment with a recently characterized pan-SIRT inhibitor, MC2494. MC2494 was able to block mitochondrial biogenesis and function in terms of ATP synthesis and energy metabolism, suggesting that it might orchestrate cell response to metabolic stress and thereby interfere with cancer promotion and progression. Targeting mitochondrial function could thus be considered a potential anticancer strategy for use in clinical therapy.

18.
Pharmacol Res ; 157: 104781, 2020 07.
Article in English | MEDLINE | ID: mdl-32360273

ABSTRACT

The results of trials with sodium-glucose cotransporter 2 (SGLT2) inhibitors raised the possibility that this class of drugs provides cardiovascular benefits independently from their anti-diabetic effects, although the mechanisms are unknown. Therefore, we tested the effects of SGLT2 inhibitor dapagliflozin on the progression of experimental heart disease in a non-diabetic model of heart failure with preserved ejection fraction. Dahl salt-sensitive rats were fed a high-salt diet to induce hypertension and diastolic dysfunction and were then treated with dapagliflozin for six weeks. Dapagliflozin ameliorated diastolic function as documented by echo-Doppler and heart catheterization, while blood pressure remained markedly elevated. Chronic in vivo treatment with dapagliflozin reduced diastolic Ca2+ and Na+ overload and increased Ca2+ transient amplitude in ventricular cardiomyocytes, although no direct action of dapagliflozin on isolated cardiomyocytes was observed. Dapagliflozin reversed endothelial activation and endothelial nitric oxide synthase deficit, with reduced cardiac inflammation and consequent attenuation of pro-fibrotic signaling. The potential involvement of coronary endothelium was supported by the endothelial upregulation of Na+/H+ exchanger 1in vivo and direct effects on dapagliflozin on the activity of this exchanger in endothelial cells in vitro. In conclusions, several mechanisms may cumulatively play a significant role in the dapagliflozin-associated cardioprotection. Dapagliflozin ameliorates diastolic function and exerts a positive effect on the myocardium, possibly targeting coronary endothelium. The lower degree of endothelial dysfunction, inflammation and fibrosis translate into improved myocardial performance.


Subject(s)
Benzhydryl Compounds/pharmacology , Coronary Vessels/drug effects , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Glucosides/pharmacology , Heart Failure/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Ventricular Dysfunction, Left/drug therapy , Ventricular Function, Left/drug effects , Animals , Calcium Signaling , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Diastole , Disease Models, Animal , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Heart Failure/metabolism , Heart Failure/physiopathology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats, Inbred Dahl , Sodium/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
19.
Cells ; 10(1)2020 12 30.
Article in English | MEDLINE | ID: mdl-33396628

ABSTRACT

Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Signal Transduction , Animals , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans
20.
FEBS Lett ; 593(18): 2574-2584, 2019 09.
Article in English | MEDLINE | ID: mdl-31254352

ABSTRACT

Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting-edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2-downregulated AML cells, we identified miR-96-5p and miR-92a-3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.


Subject(s)
Histone Deacetylase 2/metabolism , Leukemia, Myeloid, Acute/pathology , MicroRNAs/genetics , Cell Line, Tumor , Gene Regulatory Networks , Genes, MHC Class II/genetics , Humans , Leukemia, Myeloid, Acute/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...