Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Front Immunol ; 14: 1183215, 2023.
Article in English | MEDLINE | ID: mdl-37441071

ABSTRACT

Background: Natural Killer cells (NKs) represent the innate counterpart of TCRαß lymphocytes and are characterized by a high anti-tumor and an anti-viral cytotoxic activity. Recently, it has been demonstrated that NKs can express PD-1 as an additional inhibitory receptor. Specifically, PD-1 was identified on a subpopulation of terminally differentiated NKs from healthy adults with previous HCMV infection. So far it is unknown whether PD-1 appears during NK-cell development and whether this process is directly or indirectly related to HCMV infection. Methods: In this study, we analyzed the expression and function of PD-1 on Cord Blood derived NKs (CB-NKs) on a large cohort of newborns through multiparametric cytofluorimetric analysis. Results: We identified PD-1 on CB-NKs in more than of half the newborns analyzed. PD-1 was present on CD56dim NKs, and particularly abundant on CD56neg NKs, but only rarely present on CD56bright NKs. Importantly, unlike in adult healthy donors, in CB-NKs PD-1 is co-expressed not only with KIR, but also with NKG2A. PD-1 expression was independent of HCMV mother seropositivity and occurs in the absence of HCMV infection/reactivation during pregnancy. Notably, PD-1 expressed on CB-NKs was functional and mediated negative signals when triggered. Conclusion: To our understanding, this study is the first to report PD-1 expression on CB derived NKs and its features in perinatal conditions. These data may prove important in selecting the most suitable CB derived NK cell population for the development of different immunotherapeutic treatments.


Subject(s)
Cytomegalovirus Infections , Fetal Blood , Adult , Humans , Infant, Newborn , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Killer Cells, Natural/metabolism , Cytomegalovirus Infections/metabolism , Receptors, Death Domain/metabolism
2.
Semin Immunol ; 65: 101706, 2023 01.
Article in English | MEDLINE | ID: mdl-36542944

ABSTRACT

Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Killer Cells, Natural , Cell Differentiation , NK Cell Lectin-Like Receptor Subfamily C/metabolism
3.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36230485

ABSTRACT

High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αßT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.

4.
Vaccines (Basel) ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35891197

ABSTRACT

Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).

5.
Front Immunol ; 13: 837457, 2022.
Article in English | MEDLINE | ID: mdl-35280988

ABSTRACT

Surgical resection, chemotherapy and radiotherapy were, for many years, the only available cancer treatments. Recently, the use of immune checkpoint inhibitors and adoptive cell therapies has emerged as promising alternative. These cancer immunotherapies are aimed to support or harness the patient's immune system to recognize and destroy cancer cells. Preclinical and clinical studies, based on the use of T cells and more recently NK cells genetically modified with chimeric antigen receptors retargeting the adoptive cell therapy towards tumor cells, have already shown remarkable results. In this review, we outline the latest highlights and progress in immunotherapies for the treatment of Diffuse Large B-cell Lymphoma (DLBCL) patients, focusing on CD19-targeted immunotherapies. We also discuss current clinical trials and opportunities of using immunotherapies to treat DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Antigens, CD19 , Humans , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/therapy
6.
Eur J Immunol ; 51(7): 1566-1579, 2021 07.
Article in English | MEDLINE | ID: mdl-33899224

ABSTRACT

NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.


Subject(s)
Killer Cells, Natural/immunology , Animals , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunity, Innate/immunology , Neoplasms/immunology , Virus Diseases/immunology
7.
J Allergy Clin Immunol ; 147(6): 2343-2357, 2021 06.
Article in English | MEDLINE | ID: mdl-33493558

ABSTRACT

BACKGROUND: There is limited knowledge on the origin and development from CD34+ precursors of the ample spectrum of human natural killer (NK) cells, particularly of specialized NK subsets. OBJECTIVE: This study sought to characterize the NK-cell progeny of CD34+DNAM-1brightCXCR4+ and of other precursors circulating in the peripheral blood of patients with chronic viral infections (eg, HIV, hepatitis C virus, cytomegalovirus reactivation). METHODS: Highly purified precursors were obtained by flow cytometric sorting and cultured in standard NK-cell differentiation media (ie, SCF, FLT3, IL-7, IL-15). Phenotypic and functional analyses on progenies were performed by multiparametric cytofluorimetric assays. Transcriptional signatures of NK-cell progenies were studied by microarray analysis. Inhibition of cytomegalovirus replication was studied by PCR. RESULTS: Unlike conventional CD34+ precursors, Lin-CD34+DNAM-1brightCXCR4+ precursors from patients with chronic infection, rapidly differentiate into cytotoxic, IFN-γ-secreting CD94/NKG2C+KIR+CD57+ NK-cell progenies. An additional novel subset of common lymphocyte precursors was identified among Lin-CD34-CD56-CD16+ cells and characterized by expression of CXCR4 and lack of perforin and CD94. Lin-CD34-CD56-CD16+Perf-CD94-CXCR4+ precursors are also endowed with generation potential toward memory-like NKG2C+NK cells. Maturing NK-cell progenies mediated strong human cytomegalovirus-inhibiting activity. Microarray analysis confirmed a transcriptional signature compatible with NK-cell progenies and with maturing adaptive NK cells. CONCLUSIONS: During viral infections, precursors of adaptive NK cells are released and circulate in the peripheral blood.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Cytomegalovirus/immunology , Host-Pathogen Interactions/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Biomarkers , Cell Differentiation , Cytokines/metabolism , Cytomegalovirus Infections/virology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology
8.
Mol Aspects Med ; 80: 100870, 2021 08.
Article in English | MEDLINE | ID: mdl-32800530

ABSTRACT

Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.


Subject(s)
Leukemia , Neoplasms , Humans , Immunity, Innate , Immunotherapy , Killer Cells, Natural , Neoplasms/therapy
9.
Cancers (Basel) ; 12(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321719

ABSTRACT

Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.

10.
Front Immunol ; 11: 2156, 2020.
Article in English | MEDLINE | ID: mdl-33013909

ABSTRACT

The highly destructive mechanisms by which the immune system faces microbial infections is under the control of a series of inhibitory receptors. While most of these receptors prevent unwanted/excessive responses of individual effector cells, others play a more general role in immunity, acting as true inhibitory checkpoints controlling both innate and adaptive immunity. Regarding human NK cells, their function is finely regulated by HLA-class I-specific inhibitory receptors which allow discrimination between HLA-I+, healthy cells and tumor or virus-infected cells displaying loss or substantial alterations of HLA-I molecules, including allelic losses that are sensed by KIRs. A number of non-HLA-specific receptors have been identified which recognize cell surface or extracellular matrix ligands and may contribute to the physiologic control of immune responses and tolerance. Among these receptors, Siglec 7 (p75/AIRM-1), LAIR-1 and IRp60, recognize ligands including sialic acids, extracellular matrix/collagen or aminophospholipids, respectively. These ligands may be expressed at the surface of tumor cells, thus inhibiting NK cell function. Expression of the PD-1 checkpoint by NK cells requires particular cytokines (IL-15, IL-12, IL-18) together with cortisol, a combination that may occur in the microenvironment of different tumors. Blocking of single or combinations of inhibitory receptors unleashes NK cells and restore their anti-tumor activity, with obvious implications for tumor immunotherapy.


Subject(s)
Immune Checkpoint Proteins/metabolism , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Antigens, Differentiation, Myelomonocytic/metabolism , Gene Expression Regulation, Neoplastic , Humans , Killer Cells, Natural/transplantation , Lectins/metabolism , Neoplasms/immunology , Receptors, KIR/metabolism , Tumor Escape , Tumor Microenvironment
11.
Cancers (Basel) ; 12(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764469

ABSTRACT

NK cells can exert remarkable graft-versus-leukemia (GvL) effect in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Here, we dissected the NK-cell repertoire of 80 pediatric acute leukemia patients previously reported to have an excellent clinical outcome after αßT/B-depleted haplo-HSCT. This graft manipulation strategy allows the co-infusion of mature immune cells, mainly NK and γδT cells, and hematopoietic stem cells (HSCs). To promote NK-cell based antileukemia activity, 36/80 patients were transplanted with an NK alloreactive donor, defined according to the KIR/KIR-Ligand mismatch in the graft-versus-host direction. The analysis of the reconstituted NK-cell repertoire in these patients showed relatively high proportions of mature and functional KIR+NKG2A-CD57+ NK cells, including the alloreactive NK cell subset, one month after HSCT. Thus, the NK cells adoptively transfused with the graft persist as a mature source of effector cells while new NK cells differentiate from the donor HSCs. Notably, the alloreactive NK cell subset was endowed with the highest anti-leukemia activity and its size in the reconstituted repertoire could be influenced by human cytomegalovirus (HCMV) reactivation. While the phenotypic pattern of donor NK cells did not impact on post-transplant HCMV reactivation, in the recipients, HCMV infection/reactivation fostered a more differentiated NK-cell phenotype. In this cohort, no significant correlation between differentiated NK cells and relapse-free survival was observed.

12.
J Clin Med ; 8(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623224

ABSTRACT

Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.

13.
Front Microbiol ; 10: 2297, 2019.
Article in English | MEDLINE | ID: mdl-31636622

ABSTRACT

NK cells contribute to early defenses against viruses through their inborn abilities that include sensing of PAMPs and inflammatory signals such as cytokines or chemokines, recognition, and killing of infected cells through activating surface receptors engagement. Moreover, they support adaptive responses via Ab-dependent mechanisms, triggered by CD16, and DC editing. Their fundamental role in anti-viral responses has been unveiled in patients with NK cell deficiencies suffering from severe Herpesvirus infections. Notably, these infections, often occurring as primary infections early in life, can be efficiently cleared by NK, T, and B cells in healthy hosts. Herpesviruses however, generate a complicated balance with the host immune system through their latency cycle moving between immune control and viral reactivation. This lifelong challenge has contributed to the development of numerous evasion mechanisms by Herpesviruses, many of which devoted to elude NK cell surveillance from viral reactivations rather than primary infections. This delicate equilibrium can be altered in proportions of healthy individuals promoting virus reactivation and, more often, in immunocompromised subjects. However, the constant stimulus provided by virus-host interplay has also favored NK-cell adaptation to Herpesviruses. During anti-HCMV responses, NK cells can reshape their receptor repertoire and function, through epigenetic remodeling, and acquire adaptive traits such as longevity and clonal expansion abilities. The major mechanisms of recognition and effector responses employed by NK cells against Herpesviruses, related to their genomic organization will be addressed, including those allowing NK cells to generate memory-like responses. In addition, the mechanisms underlying virus reactivation or control will be discussed.

14.
Front Immunol ; 10: 1963, 2019.
Article in English | MEDLINE | ID: mdl-31497016

ABSTRACT

Peritoneal carcinomatosis (PC) is a rare disease defined as diffused implantation of neoplastic cells in the peritoneal cavity. This clinical picture occurs during the evolution of peritoneal tumors, and it is the main cause of morbidity and mortality of patients affected by these pathologies, though cytoreductive surgery with heated intra-peritoneal chemotherapy (CRS/HIPEC) is yielding promising results. In the present study, we evaluated whether the tumor microenvironment of low-grade and high-grade PC could affect the phenotypic and functional features and thus the anti-tumor potential of NK cells. We show that while in the peritoneal fluid (PF) of low-grade PC most CD56dim NK cells show a relatively immature phenotype (NKG2A+KIR-CD57-CD16dim), in the PF of high-grade PC NK cells are, in large majority, mature (CD56dimKIR+CD57+CD16bright). Furthermore, in low-grade PC, PF-NK cells are characterized by a sharp down-regulation of some activating receptors, primarily NKp30 and DNAM-1, while, in high-grade PC, PF-NK cells display a higher expression of the PD-1 inhibitory checkpoint. The compromised phenotype observed in low-grade PC patients corresponds to a functional impairment. On the other hand, in the high-grade PC patients PF-NK cells show much more important defects that only partially reflect the compromised phenotype detected. These data suggest that the PC microenvironment may contribute to tumor escape from immune surveillance by inducing different NK cell impaired features leading to altered anti-tumor activity. Notably, after CRS/HIPEC treatment, the altered NK cell phenotype of a patient with a low-grade disease and favorable prognosis was reverted to a normal one. Our present data offer a clue for the development of new immunotherapeutic strategies capable of restoring the NK-mediated anti-tumor responses in association with the CRS/HIPEC treatment to increase the effectiveness of the current therapy.


Subject(s)
Killer Cells, Natural/immunology , Peritoneal Neoplasms/immunology , Cell Line, Tumor , Humans , Phenotype , Severity of Illness Index , Tumor Escape , Tumor Microenvironment/immunology
15.
Front Immunol ; 10: 1415, 2019.
Article in English | MEDLINE | ID: mdl-31316503

ABSTRACT

Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).


Subject(s)
Cytotoxicity, Immunologic/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , Adaptive Immunity/immunology , Cell Communication/immunology , Humans , Immunologic Memory/immunology , Lymphocytes/immunology , Receptors, Natural Killer Cell/immunology
16.
J Immunol ; 201(5): 1460-1467, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30068594

ABSTRACT

Four killer cell Ig-like receptor (KIR) genes, collectively referred to as framework genes, characterize almost all KIR haplotypes. In particular, KIR3DL3 and KIR3DL2 mark the ends of the locus, whereas KIR3DP1 and KIR2DL4 are located in the central part. A recombination hot spot, mapped between KIR3DP1 and KIR2DL4, splits the haplotypes into two regions: a centromeric (Cen) region (spanning from KIR3DL3 to KIR3DP1) and a telomeric region (from KIR2DL4 to KIR3DL2), both varying in KIR gene content. In this study, we analyzed KIR3DP1 polymorphism in a cohort of 316 healthy, unrelated individuals. To this aim, we divided KIR3DP1 alleles into two groups by the use of a sequence-specific primer- PCR approach. Our data clearly indicated that KIR3DP1 alleles present on haplotypes carrying Cen-A or Cen-B1 regions differ from those having Cen-B2 motifs. Few donors (∼3%) made exceptions, and they were all, except one, characterized by uncommon haplotypes, including either KIR deletions or KIR duplications. Consequently, as KIR2DL1 is present in Cen-A and Cen-B1 regions but absent in Cen-B2 regions, we demonstrated that KIR3DP1 polymorphism might represent a suitable marker for KIR2DL1 gene copy number analysis. Moreover, because Cen-B1 and Cen-B2 regions are characterized by different KIR3DP1 alleles, we showed that KIR3DP1 polymorphism analysis also provides information to dissect between Cen-B1/Cen-B1 and Cen-B1/Cen-B2 donors. Taken together, our data suggest that the analysis of KIR3DP1 polymorphism should be included in KIR repertoire evaluation.


Subject(s)
Alleles , Centromere/genetics , Haplotypes , Polymorphism, Genetic , Receptors, KIR2DL4/genetics , Receptors, KIR3DS1/genetics , Centromere/immunology , Female , Gene Deletion , Gene Duplication , Humans , Male , Receptors, KIR2DL4/immunology , Receptors, KIR3DS1/immunology
17.
Front Immunol ; 9: 1050, 2018.
Article in English | MEDLINE | ID: mdl-29868012

ABSTRACT

In human natural killer (NK) cells, human cytomegalovirus (HCMV) has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT) recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6), downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12). This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56-CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully "adaptive" profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV-induced FcεRγneg and FcεRγ+ NK cells from these patients, display similar CD107a degranulation and IFN-γ production capabilities in response to different stimuli, thus indicating that the acquisition of specialized effector functions can be achieved before the "adaptation" to HCMV is completed. Our study provides new insights in the process leading to the generation of different adaptive NK-cell subsets and may contribute to develop new approaches for their employment as novel immunotherapeutic tools.


Subject(s)
Cord Blood Stem Cell Transplantation/adverse effects , Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , Receptors, IgE/immunology , Virus Activation , Adult , Antibody-Dependent Cell Cytotoxicity , Cell Differentiation/immunology , Child , Child, Preschool , Cytomegalovirus , Down-Regulation , Female , Flow Cytometry , Humans , Infant , Leukocytes, Mononuclear/immunology , Lymphocyte Activation , Male , Middle Aged , Receptors, IgE/genetics , Transplant Recipients , Young Adult
18.
Trends Immunol ; 39(7): 577-590, 2018 07.
Article in English | MEDLINE | ID: mdl-29793748

ABSTRACT

Natural killer (NK) cells are involved in innate defenses against viruses and tumors. Their function is finely tuned by activating and inhibitory receptors. Among the latter, killer immunoglobulin-like receptors and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to discriminate between normal and aberrant cells, as well as to recognize allogeneic cells, because of their ability to sense HLA polymorphisms. This latter phenomenon plays a key role in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for high-risk acute leukemia patients transplanted from an NK-alloreactive donor. Different haplo-HSCT settings have been developed, either T depleted or T replete - the latter requiring graft-versus-host disease prophylaxis. A novel graft manipulation, based on depletion of αß T cells and B cells, allows infusion of fully mature, including alloreactive, NK cells. The excellent patient clinical outcome underscores the importance of these innate cells in cancer therapy.


Subject(s)
Graft vs Leukemia Effect/immunology , Killer Cells, Natural/immunology , Leukemia/immunology , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans
19.
Cytometry B Clin Cytom ; 92(2): 100-114, 2017 03.
Article in English | MEDLINE | ID: mdl-28054442

ABSTRACT

Natural killer (NK) cells, the most important effectors of the innate lymphoid cells (ILCs), play a fundamental role in tumor immune-surveillance, defense against viruses and, in general, in innate immune responses. NK cell activation is mediated by several activating receptors and co-receptors able to recognize ligands on virus-infected or tumor cells. To prevent healthy cells from auto-aggression, NK cells are provided with strong inhibitory receptors (KIRs and NKG2A) which recognize HLA class I molecules on target cells and, sensing their level of expression, allow killing of targets underexpressing HLA-class I. In vivo, NK cell-mediated anti-tumor function may be suppressed by tumor or tumor-associated cells via inhibitory soluble factors/cytokines or the engagement of the so called immune-check point molecules (e.g., PD1-PDL1). The study of these immune check-points is now offering new important opportunities for the therapy of cancer. In haemopoietic stem cell transplantation, alloreactive NK cells (i.e., those that express KIRs, which do not recognize HLA class I molecules on patient cells), derived from HSC of haploidentical donors, are able to kill leukemia blasts and patient's DC, thus preventing both tumor relapses and graft-versus-host disease. A clear correlation exists between size of the alloreactive NK cell population and clinical outcome. Thus, in view of the recent major advances in cancer therapy based on immuno-mediated mechanisms, the phenotypic analysis of cells and molecules involved in these mechanisms plays an increasingly major role. © 2017 International Clinical Cytometry Society.


Subject(s)
Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation , Killer Cells, Natural/cytology , Leukemia/therapy , Receptors, KIR/metabolism , Animals , Graft vs Host Disease/diagnosis , Graft vs Host Disease/immunology , Humans , Leukemia/immunology , Phenotype
20.
Front Immunol ; 7: 351, 2016.
Article in English | MEDLINE | ID: mdl-27683578

ABSTRACT

Human NK cells are distinguished into CD56(bright)CD16(-) cells and CD56(dim)CD16(+) cells. These two subsets are conventionally associated with differential functional outcomes and are heterogeneous with respect to the expression of KIR and CD94/NKG2 heterodimers that represent the two major types of HLA-class I-specific receptors. Recent studies indicated that immature CD56(bright) NK cells, homogeneously expressing the inhibitory CD94/NKG2A receptor, are precursors of CD56(dim) NK cells that, in turn, during their process of differentiation, lose expression of CD94/NKG2A and subsequentially acquire inhibitory KIRs and LIR-1. The terminally differentiated phenotype of CD56(dim) cells is marked by the expression of the CD57 molecule that is associated with poor responsiveness to cytokine stimulation, but retained cytolytic capacity. Remarkably, this NKG2A(-)KIR(+)LIR-1(+)CD57(+)CD56(dim) NK cell subset when derived from individuals previously exposed to pathogens, such as human cytomegalovirus (HCMV), may contain "memory-like" NK cells. These cells are generally characterized by an upregulation of the activating receptor CD94/NKG2C and a downregulation of the inhibitory receptor Siglec-7. The "memory-like" NK cells are persistent over time and display some hallmarks of adaptive immunity, i.e., clonal expansion, more effective antitumor and antiviral immune responses, longevity, as well as given epigenetic modifications. Interestingly, unknown cofactors associated with HCMV infection may induce the onset of a recently identified fully mature NK cell subset, characterized by marked downregulation of the activating receptors NKp30 and NKp46 and by the unexpected expression of the inhibitory PD-1 receptor. This phenotype correlates with an impaired antitumor NK cell activity that can be partially restored by antibody-mediated disruption of PD-1/PD-L interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...