Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Headache Pain ; 25(1): 6, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221631

ABSTRACT

BACKGROUND: Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS: A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS: We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS: Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.


Subject(s)
Mechanotransduction, Cellular , Migraine Disorders , Animals , Mechanotransduction, Cellular/physiology , Pain , Migraine Disorders/diagnosis , Nociception/physiology
2.
J Headache Pain ; 24(1): 38, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37038131

ABSTRACT

BACKGROUND: Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS: Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS: The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS: In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.


Subject(s)
Endocannabinoids , Migraine Disorders , Rats , Humans , Animals , Aged , Endocannabinoids/pharmacology , Monoglycerides/therapeutic use , Chromatography, Liquid , Nociception , Carbamates/pharmacology , Carbamates/therapeutic use , Rats, Wistar , Tandem Mass Spectrometry , Pain/drug therapy , Amidohydrolases/metabolism , Amidohydrolases/therapeutic use , Migraine Disorders/drug therapy , Monoacylglycerol Lipases/metabolism
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675204

ABSTRACT

It has been proposed that mechanosensitive Piezo1 channels trigger migraine pain in trigeminal nociceptive neurons, but the mechanosensitivity of satellite glial cells (SGCs) supporting neuronal sensitization has not been tested before. Moreover, tools to monitor previous Piezo1 activation are not available. Therefore, by using live calcium imaging with Fluo-4 AM and labeling with FM1-43 dye, we explored a new strategy to identify Piezo channels' activity in mouse trigeminal neurons, SGCs, and isolated meninges. The specific Piezo1 agonist Yoda1 induced calcium transients in both neurons and SGCs, suggesting the functional expression of Piezo1 channels in both types of cells. In Piezo1-transfected HEK cells, FM1-43 produced only a transient fluorescent response, whereas co-application with Yoda1 provided higher transient signals and a remarkable long-lasting FM1-43 'tail response'. A similar Piezo1-related FM1-43 trapping was observed in neurons and SGCs. The non-specific Piezo channel blocker, Gadolinium, inhibited the transient peak, confirming the involvement of Piezo1 receptors. Finally, FM1-43 labeling demonstrated previous activity in meningeal tissues 3.5 h after Yoda1 washout. Our data indicated that trigeminal neurons and SGCs express functional Piezo channels, and their activation provides sustained labeling with FM1-43. This long-lasting labelling can be used to monitor the ongoing and previous activation of Piezo1 channels in the trigeminal nociceptive system, which is implicated in migraine pain.


Subject(s)
Migraine Disorders , Animals , Mice , Calcium/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Migraine Disorders/genetics , Migraine Disorders/metabolism , Nociception/physiology , Pain
4.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457225

ABSTRACT

Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation 'on demand', along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.


Subject(s)
Endocannabinoids , Migraine Disorders , Amidohydrolases/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Carbamates/pharmacology , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrolysis , Ion Channels , Migraine Disorders/drug therapy , Monoacylglycerol Lipases/metabolism , Pain
5.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530477

ABSTRACT

In migraine pain, cannabis has a promising analgesic action, which, however, is associated with side psychotropic effects. To overcome these adverse effects of exogenous cannabinoids, we propose migraine pain relief via activation of the endogenous cannabinoid system (ECS) by inhibiting enzymes degrading endocannabinoids. To provide a functional platform for such purpose in the peripheral and central parts of the rat nociceptive system relevant to migraine, we measured by activity-based protein profiling (ABPP) the activity of the main endocannabinoid-hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH). We found that in trigeminal ganglia, the MAGL activity was nine-fold higher than that of FAAH. MAGL activity exceeded FAAH activity also in DRG, spinal cord and brainstem. However, activities of MAGL and FAAH were comparably high in the cerebellum and cerebral cortex implicated in migraine aura. MAGL and FAAH activities were identified and blocked by the selective and potent inhibitors JJKK-048/KML29 and JZP327A, respectively. The high MAGL activity in trigeminal ganglia implicated in the generation of nociceptive signals suggests this part of ECS as a priority target for blocking peripheral mechanisms of migraine pain. In the CNS, both MAGL and FAAH represent potential targets for attenuation of migraine-related enhanced cortical excitability and pain transmission.


Subject(s)
Amidohydrolases/metabolism , Endocannabinoids/metabolism , Migraine Disorders/etiology , Migraine Disorders/metabolism , Monoacylglycerol Lipases/metabolism , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/genetics , Animals , Central Nervous System/metabolism , Central Nervous System/physiopathology , Disease Models, Animal , Enzyme Activation , Enzyme Inhibitors/pharmacology , Hydrolysis , Male , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Peripheral Nerves/metabolism , Peripheral Nerves/physiopathology , Rats
6.
Int J Mol Sci ; 21(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973098

ABSTRACT

Recently discovered mechanosensitive Piezo channels emerged as the main molecular detectors of mechanical forces. The functions of Piezo channels range from detection of touch and pain, to control of the plastic changes in different organs. Recent studies suggested the role of Piezo channels in migraine pain, which is supposed to originate from the trigeminovascular nociceptive system in meninges. Interestingly, migraine pain is associated with such phenomenon as mechanical hypersensitivity, suggesting enhanced mechanotransduction. In the current review, we present the data that propose the implication of Piezo channels in migraine pain, which has a distinctive pulsatile character. These data include: (i) distribution of Piezo channels in the key elements of the trigeminovascular nociceptive system; (ii) the prolonged functional activity of Piezo channels in meningeal afferents providing a mechanistical basis for mechanotransduction in nociceptive nerve terminals; (iii) potential activation of Piezo channels by shear stress and pulsating blood flow; and (iv) modulation of these channels by emerging chemical agonists and modulators, including pro-nociceptive compounds. Achievements in this quickly expanding field should open a new road for efficient control of Piezo-related diseases including migraine and chronic pain.


Subject(s)
Ion Channels/metabolism , Mechanotransduction, Cellular/physiology , Migraine Disorders/metabolism , Pain/metabolism , Action Potentials , Animals , Humans , Meninges/metabolism , Nociception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...