Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047445

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Our study aimed to explore differences in bone alterations between T2DM women and controls and to assess clinical predictors of bone impairment in T2DM. For this observational case control study, we recruited 126 T2DM female patients and 117 non-diabetic, age- and BMI-comparable women, who underwent clinical examination, routine biochemistry and dual-energy X-ray absorptiometry (DXA) scans for bone mineral density (BMD) and trabecular bone score (TBS) assessment-derived indexes. These were correlated to metabolic parameters, such as glycemic control and lipid profile, by bivariate analyses, and significant variables were entered in multivariate adjusted models to detect independent determinants of altered bone status in diabetes. The T2DM patients were less represented in the normal bone category compared with controls (5% vs. 12%; p = 0.04); T2DM was associated with low TBS (OR: 2.47, C.I. 95%: 1.19-5.16, p = 0.016) in a regression model adjusted for age, menopausal status and BMI. In women with T2DM, TBS directly correlated with plasma high-density lipoprotein cholesterol (HDL-c) (p = 0.029) and vitamin D (p = 0.017) levels. An inverse association was observed with menopausal status (p < 0.001), metabolic syndrome (p = 0.014), BMI (p = 0.005), and waist circumference (p < 0.001). In the multivariate regression analysis, lower HDL-c represented the main predictor of altered bone quality in T2DM, regardless of age, menopausal status, BMI, waist circumference, statin treatment, physical activity, and vitamin D (p = 0.029; R2 = 0.47), which likely underlies common pathways between metabolic disease and bone health in diabetes.


Subject(s)
Cholestanes , Diabetes Mellitus, Type 2 , Humans , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Case-Control Studies , Cholesterol, HDL , Bone Density , Cancellous Bone , Vitamin D/therapeutic use , Lumbar Vertebrae
2.
Hepatol Int ; 17(2): 357-366, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36520377

ABSTRACT

BACKGROUND AND PURPOSE: Chronic liver diseases are associated with increased bone fracture risk, mostly in end-stage disease and cirrhosis; besides, data in non-alcoholic fatty liver disease (NAFLD) are limited. Aim of this study was to investigate bone mineralization and microstructure in obese individuals with NAFLD in relation to the estimated liver fibrosis. METHODS: For this cross-sectional investigation, we analyzed data from 1872 obese individuals (44.6 ± 14.1 years, M/F: 389/1483; BMI: 38.3 ± 5.3 kg/m2) referring to the Endocrinology outpatient clinics of Sapienza University, Rome, Italy. Participants underwent clinical work-up, Dual-Energy X-ray Absorptiometry for assessing bone mineral density (BMD) and microarchitecture (trabecular bone score, TBS). Liver fibrosis was estimated by Fibrosis Score 4 (FIB-4). Serum parathyroid hormone (PTH), 25(OH) vitamin D, osteocalcin and IGF-1 levels were measured. RESULTS: Obese individuals with osteopenia/osteoporosis had greater FIB-4 than those with normal BMD (p < 0.001). FIB-4 progressively increased in presence of degraded bone microarchitecture (p < 0.001) and negatively correlated with the serum osteocalcin (p < 0.001) and IGF-1 (p < 0.001), which were both reduced in presence of osteopenia/osteoporosis. FIB-4 predicted IGF-1 reduction in multivariable regression models adjusted for confounders (ß: - 0.18, p < 0.001). Higher FIB-4 predicted bone fragility with OR 3.8 (95%C.I:1.5-9.3); this association persisted significant after adjustment for sex, age, BMI, diabetes, smoking status and PTH at the multivariable logistic regression analysis (OR 1.91 (95%C.I:1.15-3.17), p < 0.01), with AUROC = 0.842 (95%C.I:0.795-0.890; p < 0.001). CONCLUSION: Our data indicate the presence of a tight relation between NAFLD-related liver fibrosis, lower bone mineral density and degraded microarchitecture in obese individuals, suggesting potential common pathways underlying liver and bone involvement in obesity and insulin resistance-associated disorders.


Subject(s)
Non-alcoholic Fatty Liver Disease , Osteoporosis , Humans , Non-alcoholic Fatty Liver Disease/complications , Insulin-Like Growth Factor I , Calcification, Physiologic , Cross-Sectional Studies , Osteocalcin , Liver Cirrhosis/complications , Obesity/complications , Bone Density , Osteoporosis/complications , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...