Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894012

ABSTRACT

Memristors, since their inception, have demonstrated remarkable characteristics, notably the exceptional reconfigurability of their memory. This study delves into electroforming-free YMnO3 (YMO)-based resistive switches, emphasizing the reconfigurable memory effect in multiferroic YMO thin films with metallically conducting electrodes and their pivotal role in achieving adaptable frequency responses in impedance circuits consisting of reconfigurable YMO-based resistive switches and no reconfigurable passive elements, e.g., inductors and capacitors. The multiferroic YMO possesses a network of charged domain walls which can be reconfigured by a time-dependent voltage applied between the metallically conducting electrodes. Through experimental demonstrations, this study scrutinizes the impedance response not only for individual switch devices but also for impedance circuitry based on YMO resistive switches in both low- and high-resistance states, interfacing with capacitors and inductors in parallel and series configurations. Scrutinized Nyquist plots visually capture the intricate dynamics of impedance circuitry, revealing the potential of electroforming-free YMO resistive switches in finely tuning frequency responses within impedance circuits. This adaptability, rooted in the unique properties of YMO, signifies a paradigm shift heralding the advent of advanced and flexible electronic technologies.

2.
Nanomaterials (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921868

ABSTRACT

Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFe12O19) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles' properties. Second, the iron-to-barium ratio (Fe/Ba = r) was varied between 2 and 12. Vibrating sample magnetometry, scanning electron microscopy and X-ray diffraction were used for characterization. A considerable influence of the calcination temperature (Tcal) was found on the resulting magnetic properties, with a decrease in coercivity (HC) from values above 370 kA/m for Tcal = 800-1000 °C to HC = 45-70 kA/m for Tcal = 1200 °C. We attribute this drop in HC mainly to the formation of entirely multi-domain particles at high Tcal. For the varying Fe/Ba ratios, increasing amounts of BaFe2O4 as an additional phase were detected by XRD in the small r (barium surplus) samples, lowering the particles' magnetization. A decrease in HC was found in the increased r samples. Crystal size ranged from 47 nm to 240 nm and large agglomerates were seen in SEM images. The reported particles, due to their controllable coercivity, can be a candidate for extracorporeal heating applications in the biomedical or biotechnological field.

3.
Phys Chem Chem Phys ; 26(18): 13826-13838, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38655850

ABSTRACT

Understanding the relationships between structure and properties of aluminosilicate glasses is of interest in magmatic studies as well as for glass applications as mechanical or optical components. Glass properties may be tailored by the incorporation of additional elements, and here we studied the effect of phosphate incorporation on refractive index and the degree of ionic bonding in aluminosilicate glasses. The studied glasses in the system SiO2-Al2O3-Na2O-P2O5 had a metaluminous composition (Al:Na = 1) with the content of SiO2 ranging from 50 to 70 mol% and of P2O5 from 0 to 7.5 mol%. Refractive index was measured at four wavelengths from visible to near-infrared and found to decrease both with increasing P2O5 content (at the expense of NaAlO2) and with increasing SiO2 content (by substitution of SiO4 for AlO4 groups). This trend correlated with a decrease in density while, additionally, the formation of Al-O-P bonds with an SiO2-like structure may account for this change. The degree of ionic bonding, assessed via optical basicity and oxygen polarisability, decreased with increasing P2O5 and SiO2 content. Despite the complexity of the studied glasses, oxygen polarisability and optical basicity were found to follow Duffy's empirical equation for simple oxide glasses. In the high frequency infrared and Raman spectra, band shifts were observed with increasing P2O5 and SiO2 content. They indicated changing average bond strength of the glass network and showed a linear correlation with optical basicity.

4.
Adv Mater ; 35(40): e2305006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572365

ABSTRACT

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.

5.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297095

ABSTRACT

In order to facilitate the design freedom for the implementation of textile-integrated electronics, we seek flexible transparent conductive electrodes (TCEs) that can withstand not only the mechanical stresses encountered during use but also the thermal stresses of post-treatment. The transparent conductive oxides (TCO) typically used for this purpose are rigid in comparison to the fibers or textiles they are intended to coat. In this paper, a TCO, specifically aluminum-doped zinc oxide (Al:ZnO), is combined with an underlying layer of silver nanowires (Ag-NW). This combination brings together the advantages of a closed, conductive Al:ZnO layer and a flexible Ag-NW layer, forming a TCE. The result is a transparency of 20-25% (within the 400-800 nm range) and a sheet resistance of 10 Ω/sq that remains almost unchanged, even after post-treatment at 180 °C.

6.
Adv Sci (Weinh) ; 10(21): e2301435, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150850

ABSTRACT

Understanding the multivariate origin of physical properties is particularly complex for polyionic glasses. As a concept, the term genome has been used to describe the entirety of structure-property relations in solid materials, based on functional genes acting as descriptors for a particular property, for example, for input in regression analysis or other machine-learning tools. Here, the genes of ionic conductivity in polyionic sodium-conducting glasses are presented as fictive chemical entities with a characteristic stoichiometry, derived from strong linear component analysis (SLCA) of a uniquely consistent dataset. SLCA is based on a twofold optimization problem that maximizes the quality of linear regression between a property (here: ionic conductivity) and champion candidates from all possible combinations of elements. Family trees and matrix rotation analysis are subsequently used to filter for essential elemental combinations, and from their characteristic mean composition, the essential genes. These genes reveal the intrinsic relationships within the multivariate input data. While they do not require a structural representation in real space, how possible structural interpretations agree with intuitive understanding of structural entities known from spectroscopic experiments is finally demonstrated.

7.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242088

ABSTRACT

Using magnetic nanoparticles for extracorporeal magnetic heating applications in bio-medical technology allows higher external field amplitudes and thereby the utilization of particles with higher coercivities (HC). In this study, we report the synthesis and characterization of high coercivity cobalt ferrite nanoparticles following a wet co-precipitation method. Particles are characterized with magnetometry, X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy (TEM) and calorimetric measurements for the determination of their specific absorption rate (SAR). In the first series, CoxFe3-xO4 particles were synthesized with x = 1 and a structured variation of synthesis conditions, including those of the used atmosphere (O2 or N2). In the second series, particles with x = 0 to 1 were synthesized to study the influence of the cobalt fraction on the resulting magnetic and structural properties. Crystallite sizes of the resulting particles ranged between 10 and 18 nm, while maximum coercivities at room temperatures of 60 kA/m for synthesis with O2 and 37 kA/m for N2 were reached. Magnetization values at room temperature and 2 T (MRT,2T) up to 60 Am2/kg under N2 for x = 1 can be achieved. Synthesis parameters that lead to the formation of an additional phase when they exceed specific thresholds have been identified. Based on XRD findings, the direct correlation between high-field magnetization, the fraction of this antiferromagnetic byphase and the estimated transition temperature of this byphase, extracted from the Mössbauer spectroscopy series, we were able to attribute this contribution to akageneite. When varying the cobalt fraction x, a non-monotonous correlation of HC and x was found, with a linear increase of HC up to x = 0.8 and a decrease for x > 0.8, while magnetometry and in-field Mössbauer experiments demonstrated a moderate degree of spin canting for all x, yielding high magnetization. SAR values up to 480 W/g (@290 kHz, 69 mT) were measured for immobilized particles with x = 0.3, whit the external field amplitude being the limiting factor due to the high coercivities of our particles.

8.
ACS Appl Mater Interfaces ; 15(15): 18889-18897, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37014708

ABSTRACT

CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.

9.
Adv Mater ; 35(1): e2204874, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300596

ABSTRACT

Layers of aligned dyes are key to photo-driven charge separation in dye sensitized solar cells, but cannot be exploited as rectifying membranes in photocatalysis to separate half-cells because they are not sufficiently stable. While impressive work on the fabrication of stable noncovalent membranes has been recently demonstrated, these membranes are inherently suffering from non-uniform orientation of the constituting dyes. To stabilize layers made from uniformly assembled and aligned dyes, they can be covalently cross-linked via functional groups or via chromophores at the expense of their optical properties. Here stable membranes from established dyes are reported that do not need to be elaborately functionalized nor do their chromophores need to be destroyed. These membranes are free-standing, although being only non-covalently linked. To enable uniform dye-alignment, Langmuir layers made from linear, water-insoluble dyes are used. That water-soluble charge transfer dyes adsorb onto and intercalate into the Langmuir layer from the aqueous subphase, thus yielding free-standing, molecularly thin membranes are demonstrated. The developed bifacial layers consist almost entirely of π-conjugated units and thus can conduct charges and can be further engineered for optoelectronic and photocatalytic applications.

10.
ChemistryOpen ; 11(12): e202200193, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36511511

ABSTRACT

Sorption-based water capture is an attractive solution to provide potable water in arid regions. Heteroatom-decorated microporous carbons with hydrophilic character are promising candidates for water adsorption at low humidity, but the strong affinity between the polar carbon pore walls and water molecules can hinder the water transport within the narrow pore system. To reduce the limitations of mass transfer, C2 N-type carbon materials obtained from the thermal condensation of a molecular hexaazatriphenylene-hexacarbonitrile (HAT-CN) precursor were treated mechanochemically via ball milling. Scanning electron microscopy as well as static light scattering reveal that large pristine C2 N-type particles were split up to a smaller size after ball milling, thus increasing the pore accessibility which consequently leads to faster occupation of the water vapor adsorption sites. The major aim of this work is to demonstrate the applicability of thermal response measurements to track these enhanced kinetics of water adsorption. The adsorption rate constant of a C2 N material condensed at 700 °C remarkably increased from 0.026 s-1 to 0.036 s-1 upon ball milling, while maintaining remarkably high water vapor capacity. This work confirms the advantages of small particle sizes in ultramicroporous materials on their vapor adsorption kinetics. It is demonstrated that thermal response measurements are a valuable and time-saving method to investigate water adsorption kinetics, capacities, and cycling stability.

11.
Small ; 18(52): e2205080, 2022 12.
Article in English | MEDLINE | ID: mdl-36344458

ABSTRACT

Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.


Subject(s)
Iodides , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Microscopy, Atomic Force
12.
Nanoscale Adv ; 4(19): 4122-4130, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36285216

ABSTRACT

Nanoparticles consisting of a mixture of several metals and also porous nanoparticles due to their special structure exhibit properties that find applications in spectroscopic detection or catalysis. Different approaches of top down or bottom up technologies exist for the fabrication of such particles. We present a novel combined approach for the fabrication of spherical porous gold nanoparticles on low-cost glass substrates under ambient conditions using a UV-laser induced particle preparation process with subsequent wet chemical selective etching. In this preparation route, nanometer-sized branched structures are formed in spherical particles. The laser process, which is applied to a silver/gold bilayer system with different individual layer thicknesses, generates spherical mixed particles in a nanosecond range and influences the properties of the fabricated nanoparticles, such as the size and the mixture and thus the spectral response. The subsequent etching process is performed by selective wet chemical removal of silver from the nanoparticles with diluted nitric acid. The gold to silver ratio was investigated by energy-dispersive X-ray spectroscopy. The porosity depends on laser parameters and film thickness as well as on etching parameters such as time. After etching, the surface area of the remaining Au nanoparticles increases which makes these particles interesting for catalysis and also as carrier particles for substances. Such substances can be positioned at defined locations or be released in appropriate environments. Absorbance spectra are also analyzed to show how the altered fractured shape of the particles changes localized plasmon resonances of the resultingt particles.

13.
Materials (Basel) ; 16(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36614351

ABSTRACT

The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.

14.
Sci Rep ; 11(1): 2787, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531588

ABSTRACT

A conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with RuII complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within ~ 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the RuII complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion.

15.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477641

ABSTRACT

In this work we investigated methods of modifying gold nanospheres bound to a silicon surface by depositing palladium onto the surfaces of single nanoparticles. Bimetallic Au-Pd nanoparticles can thus be gained for use in catalysis or sensor technology. For Pd deposition, two methods were chosen. The first method was the reduction of palladium acetate by ascorbic acid, in which the amounts of palladium acetate and ascorbic acid were varied. In the second method we utilized light-induced metal deposition by making use of the plasmonic effect. Through this method, the surface bond nanoparticles were irradiated with light of wavelengths capable of inducing plasmon resonance. The generation of hot electrons on the particle surface then reduced the palladium acetate in the vicinity of the gold nanoparticle, resulting in palladium-covered gold nanospheres. In our studies we demonstrated the effect of both enhancement methods by monitoring the particle heights over enhancement time by atomic force microscopy (AFM), and investigated the influence of ascorbic acid/Pd acetate concentration as well as the impact of the irradiated wavelengths on the enhancement effect. It could thus be proven that both methods were valid for obtaining a deposition of Pd on the surface of the gold nanoparticles. Deposition of Pd on the gold particles using the light-assisted method could be observed, indicating the impact of the plasmonic effect and hot electron for Pd acetate reduction on the gold particle surface. In the case of the reduction method with ascorbic acid, in addition to Pd deposition on the gold nanoparticle surface, larger pure Pd particles and extended clusters were also generated. The reduction with ascorbic acid however led to a considerably thicker Pd layer of up to 54 nm in comparison to up to 11 nm for the light-induced metal deposition with light resonant to the particle absorption wavelength. Likewise, it could be demonstrated that light of non-resonant wavelengths was not capable of initiating Pd deposition, since a growth of only 1.6 nm (maximum) was observed for the Pd layer.

16.
Commun Chem ; 4(1): 98, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-36697537

ABSTRACT

Porous platinum is a frequently used catalyst material in electrosynthesis and a robust broadband absorber in thermoelectrics. Pore size distribution and localization determine its properties by a large extent. However, the pore formation mechanism during the growth of the material remains unclear. In this work we elucidate the mechanism underlying electrochemical growth of nanoporous platinum layers and its control by ionic concentration and current density during electrolysis. The electrode kinetics and reduction steps of PtCl4 on platinum electrodes are investigated by cyclic voltammetry and impedance measurements. Cyclic voltammograms show three reduction steps: two steps relate to the platinum cation reduction, and one step relates to the hydrogen reduction. Hydrogen is not involved in the reduction of PtCl4, however it enables the formation of nanopores in the layers. These findings contribute to the understanding of electrochemical growth of nanoporous platinum layers in isopropanol with thickness of 100 nm to 500 nm.

17.
Sci Rep ; 10(1): 19313, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33168867

ABSTRACT

The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range. We propose a method to surpass this limitation by using a few-mode sensing interferometer instead of a single-mode one. The overlap response of the different modes produces a measurable envelope, whilst preserving an extremely high magnification factor, an order of magnification higher than current state-of-the-art performances. Furthermore, we demonstrate the application of that method in the development of a giant sensitivity fibre refractometer with a sensitivity of around 500 µm/RIU (refractive index unit) and with a magnification factor over 850.

18.
Sci Rep ; 10(1): 6698, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32317657

ABSTRACT

A novel small signal equivalent circuit model is proposed in the inversion regime of metal/(ZnO, ZnMnO, and ZnCoO) semiconductor/Si3N4 insulator/p-Si semiconductor (MSIS) structures to describe the distinctive nonlinear frequency dependent capacitance (C-F) and conductance (G-F) behaviour in the frequency range from 50 Hz to 1 MHz. We modelled the fully depleted ZnO thin films to extract the static dielectric constant (εr) of ZnO, ZnMnO, and ZnCoO. The extracted enhancement of static dielectric constant in magnetic n-type conducting ZnCoO (εr ≥ 13.0) and ZnMnO (εr ≥ 25.8) in comparison to unmagnetic ZnO (εr = 8.3-9.3) is related to the electrical polarizability of donor-type bound magnetic polarons (BMP) in the several hundred GHz range (120 GHz for CdMnTe). The formation of donor-BMP is enabled in n-type conducting, magnetic ZnO by the s-d exchange interaction between the electron spin of positively charged oxygen vacancies [Formula: see text] in the BMP center and the electron spins of substitutional Mn2+ and Co2+ ions in ZnMnO and ZnCoO, respectively. The BMP radius scales with the Bohr radius which is proportional to the static dielectric constant. Here we show how BMP overlap can be realized in magnetic n-ZnO by increasing its static dielectric constant and guide researchers in the field of transparent spintronics towards ferromagnetism in magnetic, n-ZnO.

19.
Analyst ; 145(11): 3983-3995, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32322872

ABSTRACT

The design of nanoparticles for application in medical diagnostics and therapy requires a thorough understanding of various aspects of nanoparticle-cell interactions. In this work, two unconventional methods for the study of nanoparticle effects on cells, Raman spectroscopy and atomic force microscopy (AFM), were employed to track the molecular and morphological changes that are caused by the interaction between cervical carcinoma-derived HeLa cells and two types of cerium dioxide (CeO2) nanoparticles, ones with dextran coating and the others with no coating. Multivariate statistical analyses of Raman spectra, such as principal component analysis and partial least squares regression, were applied in order to extract the variations in the vibrational features of cell biomolecules and through them, the changes in biomolecular content and conformation. Both types of nanoparticles induced changes in DNA, lipid and protein contents of the cell and variations of the protein secondary structure, whereas dextran-coated CeO2 affected the cell-growth rate to a higher extent. Atomic force microscopy showed changes in cell roughness, cell height and nanoparticle effects on surface molecular layers. The method differentiated between the impact of dextran-coated and uncoated CeO2 nanoparticles with higher precision than performed viability tests. Due to the holistic approach provided by vibrational information on the overall cell content, accompanied by morphological modifications observed by high-resolution microscopy, this methodology offers a wider picture of nanoparticle-induced cell changes, in a label-free single-cell manner.


Subject(s)
Cell Membrane/drug effects , Metal Nanoparticles/chemistry , Pseudopodia/drug effects , Cell Membrane/chemistry , Cerium/chemistry , Dextrans/chemistry , HeLa Cells , Humans , Microscopy, Atomic Force , Principal Component Analysis , Pseudopodia/chemistry , Regression Analysis , Spectrum Analysis, Raman , Surface Properties
20.
Nanomicro Lett ; 12(1): 19, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-34138074

ABSTRACT

In this contribution, inspired by the excellent resource management and material transport function of leaf veins, the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks. By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre, certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films, combined with a broadband optical transmission of above 80% in the UV-VIS-IR range. Additionally, the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization. In particular, the high current density transport capability of the electrode of > 6000 A cm-2 was demonstrated. These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to < 10% of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells, high power density Li-ion batteries, and supercapacitors.

SELECTION OF CITATIONS
SEARCH DETAIL