Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
J Exp Biol ; 204(Pt 11): 1901-7, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11441032

ABSTRACT

We recently discovered, in mating-competent Paramecium primaurelia, the presence of functionally related molecules of the cholinergic system: the neurotransmitter acetylcholine (ACh), both its nicotinic and muscarinic receptors and its lytic enzyme acetylcholinesterase (AChE). Our results on the inhibition of mating-cell pairing in vivo in mating-competent cells treated with cholinomimetic drugs support the hypothesis that the cholinergic system plays a role in cell-to-cell adhesion. To investigate the possible function of the signal molecule ACh in conjugation in P. primaurelia, we attempted to detect the intracellular sites of ACh synthesis by localizing the ACh biosynthetic enzyme choline acetyltransferase (ChAT). Using immunocytochemical and histochemical methods, we have demonstrated the presence and activity of ChAT principally on the surface membrane of mating-competent cells and of mature but non-mating-competent cells. No evidence for ChAT activity was found in immature cells. Immunoblot analysis revealed the presence of immunoreactive bands, ranging in molecular mass from 42 to 133 kDa, as reported for ChAT isolated from higher organisms. In vivo experiments showed that inhibition of ChAT activity by Congo Red, known to be a potent competitive inhibitor of acetyl coenzyme A, did not affect mating-cell pairing. Conversely, inhibition of AChE with BW 284c51 or eserine, which block enzyme activity by reacting with a specific serine within the catalytic centre, significantly inhibited mating-cell pairing. Our results suggest that ACh has a negative modulating effect on conjugation in P. primaurelia.


Subject(s)
Acetylcholine/biosynthesis , Paramecium/growth & development , Paramecium/metabolism , Acetylcholinesterase/metabolism , Animals , Cell Adhesion , Choline O-Acetyltransferase/metabolism , Cholinesterase Inhibitors/pharmacology , Immunohistochemistry , Paramecium/drug effects , Physostigmine/pharmacology , Reproduction/physiology , Signal Transduction
2.
Eur J Histochem ; 43(2): 113-20, 1999.
Article in English | MEDLINE | ID: mdl-10439214

ABSTRACT

The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.


Subject(s)
Chromatin/metabolism , Ciliophora/metabolism , Animals , Ciliophora/genetics , Ciliophora/growth & development
3.
J Exp Zool ; 283(1): 102-5, 1999 Jan 01.
Article in English | MEDLINE | ID: mdl-9990739

ABSTRACT

By histochemical and immunohistochemical methods, the presence of cholinergic-like molecules has previously been demonstrated in Paramecium primaurelia, and their functional role in mating-cell pairing was suggested. In this work, both true acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were electrophoretically investigated, and the presence of molecules immunologically related to BuChE was checked by immunoblotting. The AChE activity, shown in the membrane protein fraction of mating-competent cells and in the cytoplasmic fraction of immature cells, is due to a 260-kDa molecular form, similar to the membrane-bound tetrameric form present in human erythrocytes. This AChE activity does not appear in either the cytoplasmic fraction of mating-competent cells or in the membrane protein fraction of immature cells. No evidence was found for the presence or the activity of BuChE-like molecules. The role of AChE in P. primaurelia developmental cycle is discussed.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Paramecium/enzymology , Acetylcholinesterase/isolation & purification , Animals , Butyrylcholinesterase/isolation & purification , Membrane Proteins/chemistry , Reproduction
4.
Eur J Histochem ; 42(3): 205-12, 1998.
Article in English | MEDLINE | ID: mdl-9857246

ABSTRACT

Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition.


Subject(s)
Lectins/metabolism , Receptors, Mitogen/metabolism , Spectrometry, Fluorescence/methods , Animals , Arthropod Proteins , Binding Sites , Cell Membrane/metabolism , Energy Transfer , Fluorescent Dyes , Paramecium/metabolism , Wheat Germ Agglutinins/metabolism
6.
Eur J Protistol ; 29(1): 121-5, 1993 Feb 19.
Article in English | MEDLINE | ID: mdl-23195452
7.
Boll Soc Ital Biol Sper ; 68(8-9): 529-34, 1992.
Article in Italian | MEDLINE | ID: mdl-1294201

ABSTRACT

Concerning the studies on mating type differentiation and life cycle development in Paramecium primaurelia stock 90, both macronuclear DNA and total protein contents have been measured cytofluorometrically in mating type I and mating type II isogenic cell lines growing in logarithmic phase, throughout their maturity period and transition to senescence. The target was to investigate whether the two mating types undergo clonal decline in different times, as the previous studies suggested. The results indicate that, throughout the maturity period, macronuclear DNA and total protein contents vary both in mating type I and mating type II cell lines; moreover, aged phenotypes as the dramatic decrease of both contents, firstly occur in mating type II which, therefore, appears to be submitted to clonal decline before mating type I.


Subject(s)
DNA, Protozoan/analysis , Paramecium/growth & development , Protozoan Proteins/analysis , Aging/metabolism , Animals , Cell Nucleus/chemistry , Flow Cytometry , Paramecium/chemistry , Phenotype , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...