Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 9(7): 7725-7736, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405455

ABSTRACT

The use of natural antioxidants as substitutes for traditional synthetic stabilizers has been investigated for the stabilization of biobased and biodegradable polymers, with the aim of designing fully biobased plastic formulations. This study focused on the thermo- and photostabilization of poly(lactic acid) (PLA) using vegetal polyphenol extracts as biosourced antioxidants. The polyphenols were extracted by microwave-assisted extraction from the valorization of vegetal waste, and their potential as antioxidant additives was evaluated (e.g., polyphenol content, composition, and antioxidant activity). PLA was then formulated with 2 wt % of the extracts exhibiting the highest antioxidant activities: green tea residues, pomegranate peels, grape marc, bramble leaves, and yellow onion peel extracts. The efficiency of the natural additives as thermal stabilizers was evaluated and compared with a synthetic antioxidant using rheological and thermal analyses. The results demonstrated the capacity of grape marc extract and pomegranate peel extract to significantly improve PLA thermal stability during processing and thermo-oxidation. Finally, photorheology was conducted to evaluate the influence of the bioadditives on the biopolyester photodegradation. The different polyphenol extracts seemed to significantly hinder the photo-oxidation of PLA and constitute very promising natural UV stabilizers, combining UV absorbers and antioxidant functions.

2.
Sci Total Environ ; 859(Pt 1): 160150, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36379334

ABSTRACT

Tire and road wear particles (TRWP) are polymer-based microparticles that are emitted into the environment during tire usage. Growing efforts are currently being made to quantify these emissions, characterize the leachates and assess their environmental impact. This study aimed to investigate the effect of aging on TRWP composition. Cryomilled tire tread particles (CMTTP) and TRWP were exposed for different durations to three aging conditions: accelerated thermal and photochemical aging and natural outdoor aging. Particles were then extracted with cyclohexane/ethanol. The time-concentration profiles of 23 additives and transformation products present in these extracts were determined by UHPLC-HRMS. Several chemicals, such as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) or 1,3-diphenylguanidine (DPG), decayed exponentially under all aging conditions, with half-lives of a few days under artificial photoaging versus dozens of days under pure thermal aging at 60 °C. The natural aging profiles lie between those 2 laboratory aging conditions. Other chemicals, such as 6PPD-quinone, presented bell-shaped concentration profiles within CMTTP when particles were exposed to UV light. 6PPD-quinone reached a maximal concentration within a month under natural aging. For TRWP, the initial load of 6PPD-quinone had already reached a maximum prior to the aging experiments and decreased exponentially under natural aging with a half-life below one month. Pure thermal aging induced a significantly slower decay of 6PPD-quinone within TRWP (half-life of half a year), emphasizing a greater stability and persistence in environmental compartments without light. This study highlighted that the more readily accessible CMTTP could be considered a reasonable proxy of TRWP to investigate the fate of chemicals within rubber particles, at least from a qualitative standpoint. Overall, the concentrations of 20 of the evaluated chemicals decreased by >50 % within 50 days under natural aging.


Subject(s)
Benzoquinones , Guanidines , Phenylenediamines , Rubber , Benzoquinones/analysis , Polymers/chemistry , Phenylenediamines/analysis , Guanidines/analysis , Rubber/chemistry , Half-Life
3.
Environ Pollut ; 287: 117656, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426383

ABSTRACT

Plastic pollution in the world's ocean is one of the major environmental challenges that affects the society today, due to their persistence at sea, adverse consequences to marine life and being potentially harmful to human health. Rivers are now widely recognized as being the major input source of land-based plastic waste into the seas. Despite their key role in plastic transportation, riverine plastic pollution research is still in its infancy and plastic sources, hot-spots and degradation processes in riverine systems are to date poorly understood. In this contribution, we introduce a novel concept of following the aging of polypropylene based post-consumer goods placed in known trapping and mobility zones of macroplastics on a fluvial point bar, which was determined through repeated field surveys of macroplastic densities on this bar. As a proof-of-concept, we followed the degradation of 5 identical plastic butter tubs in 5 different locations on a riverbank and significant differences in the aging of the tubs were observed. The degree of aging of the tubs can to some extent be correlated to their proximity to the main river channel, exposure to natural conditions, such as solar radiation, and its storage time on land.


Subject(s)
Environmental Monitoring , Plastics , Butter , Humans , Rivers , Waste Products/analysis
4.
Molecules ; 23(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340360

ABSTRACT

This study is devoted to the degradation pathway (bio, photo degradation and photo/bio) of Poly(Lactic acid) PLA polymers by means of melt viscoelasticity. A comparison was made between three PLA polymers with different microstructures (L, D stereoisomers). Biodegradability was determined during composting by burying the polymer films in compost at 58 °C. Melt viscoelasticity was used to assess the molecular evolution of the materials during the composting process. Viscoelastic data were plotted in the complex plane. We used this methodology to check the kinetics of the molecular weight decrease during the initial stages of the degradation, through the evolution of Newtonian viscosity. After a few days in compost, the Newtonian viscosity decreased sharply, meaning that macromolecular chain scissions began at the beginning of the experiments. However, a double molar mass distribution was also observed on Cole⁻Cole plots, indicating that there is also a chain recombination mechanism competing with the chain scission mechanism. PLA hydrolysis was observed by infra-red spectroscopy, where acid characteristic peaks appeared and became more intense during experiments, confirming hydrolytic activity during the first step of biodegradation. During UV ageing, polymer materials undergo a deep molecular evolution. After photo-degradation, lower viscosities were measured during biodegradation, but no significant differences in composting were found.


Subject(s)
Biodegradation, Environmental , Polyesters/chemistry , Polymers/chemistry , Viscoelastic Substances/chemistry , Kinetics , Molecular Weight , Viscosity
5.
J Phys Chem B ; 118(1): 330-6, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24354613

ABSTRACT

The nonlinear dependence of polysiloxane cyclization constants (log(K(x))) with ring size (log(x)) is explained by a thermodynamic model that treats specific torsional modes of the macromolecular chains with a classical coupled hindered rotor model. Several parameters such as the dependence of the internal rotation kinetic energy matrix with geometry, the effect of potential energy hindrance, anharmonicity, and the couplings between internal rotors were investigated. This behavior arises from the competing effects of local molecular entropy that is mainly driven by the intrinsic transformation of vibrations in small cycles into hindered rotations in larger cycles and configurational entropy.

6.
Sci Technol Adv Mater ; 9(2): 024406, 2008 Apr.
Article in English | MEDLINE | ID: mdl-27877973

ABSTRACT

Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.

SELECTION OF CITATIONS
SEARCH DETAIL