Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
J Biomech ; 173: 112225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032224

ABSTRACT

There is widespread and growing use of inertial measurement technology for human motion analysis in biomechanics and clinical research. Due to advancements in sensor miniaturization, inertial measurement units can be used to obtain a description of human body and joint kinematics both inside and outside the laboratory. While algorithms for data processing continue to improve, a lack of standard reporting guidelines compromises the interpretation and reproducibility of results, which hinders advances in research and development of measurement and intervention tools. To address this need, the International Society of Biomechanics approved our proposal to develop recommendations on the use of inertial measurement units for joint kinematics analysis. A collaborative effort that incorporated feedback from the biomechanics community has produced recommendations in five categories: sensor characteristics and calibration, experimental protocol, definition of a kinematic model and subject-specific calibration, analysis of joint kinematics, and quality assessment. We have avoided an overly prescriptive set of recommendations for algorithms and protocols, and instead offer reporting guidelines to facilitate reproducibility and comparability across studies. In addition to a conceptual framework and reporting guidelines, we provide a checklist to guide the design and review of research using inertial measurement units for joint kinematics.


Subject(s)
Joints , Wearable Electronic Devices , Humans , Biomechanical Phenomena , Joints/physiology , Algorithms , Movement/physiology , Calibration , Reproducibility of Results
2.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071421

ABSTRACT

Objective: Human pose estimation models can measure movement from videos at a large scale and low cost; however, open-source pose estimation models typically detect only sparse keypoints, which leads to inaccurate joint kinematics. OpenCap, a freely available service for researchers to measure movement from videos, addresses this issue using a deep learning model-the marker enhancer-that transforms sparse keypoints into dense anatomical markers. However, OpenCap performs poorly on movements not included in the training data. Here, we create a much larger and more diverse training dataset and develop a more accurate and generalizable marker enhancer. Methods: We compiled marker-based motion capture data from 1176 subjects and synthesized 1433 hours of keypoints and anatomical markers to train the marker enhancer. We evaluated its accuracy in computing kinematics using both benchmark movement videos and synthetic data representing unseen, diverse movements. Results: The marker enhancer improved kinematic accuracy on benchmark movements (mean error: 4.1°, max: 8.7°) compared to using video keypoints (mean: 9.6°, max: 43.1°) and OpenCap's original enhancer (mean: 5.3°, max: 11.5°). It also better generalized to unseen, diverse movements (mean: 4.1°, max: 6.7°) than OpenCap's original enhancer (mean: 40.4°, max: 252.0°). Conclusion: Our marker enhancer demonstrates both accuracy and generalizability across diverse movements. Significance: We integrated the marker enhancer into OpenCap, thereby offering its thousands of users more accurate measurements across a broader range of movements.

3.
medRxiv ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38766040

ABSTRACT

Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee, a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.

4.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585841

ABSTRACT

Background: Hamstring strain injuries are associated with significant time away from sport and high reinjury rates. Recent evidence suggests that hamstring injuries often occur during accelerative running, but investigations of hamstring mechanics have primarily examined constant speed running on a treadmill. To help fill this gap in knowledge, this study compares hamstring lengths and lengthening velocities between accelerative running and constant speed overground running. Methods: We recorded 2 synchronized videos of 10 participants (5 female, 5 male) during 6 accelerative running trials and 6 constant speed running trials. We used OpenCap (a markerless motion capture system) to estimate body segment kinematics for each trial and a 3-dimensional musculoskeletal model to compute peak length and step-average lengthening velocity of the biceps femoris (long head) muscle-tendon unit. To compare running conditions, we used linear mixed regression models with running speed (normalized by the subject-specific maximum) as the independent variable. Results: At running speeds below 75% of top speed accelerative running resulted in greater peak lengths than constant speed running. For example, the peak hamstring muscle-tendon length when a person accelerated from running at only 50% of top speed was equivalent to running at a constant 88% of top speed. Lengthening velocities were greater during accelerative running at all running speeds. Differences in hip flexion kinematics primarily drove the greater peak muscle-tendon lengths and lengthening velocities observed in accelerative running. Conclusion: Hamstrings are subjected to longer muscle-tendon lengths and faster lengthening velocities in accelerative running compared to constant speed running. This provides a biomechanical explanation for the observation that hamstring strain injuries often occur during acceleration. Our results suggest coaches who monitor exposure to high-risk circumstances (long lengths, fast lengthening velocities) should consider the accelerative nature of running in addition to running speed.

5.
Article in English | MEDLINE | ID: mdl-38536680

ABSTRACT

Exoskeletons are a burgeoning technology with many possible applications to improve human life; focusing the effort of exoskeleton research and development on the most important features is essential for facilitating adoption and maximizing positive societal impact. To identify important focus areas for exoskeleton research and development, we conducted a survey with 154 potential users (older adults) and another survey with 152 clinicians. The surveys were conducted online and to ensure a consistent concept of an exoskeleton across respondents, an image of a hip exoskeleton was shown during exoskeleton-related prompts. The survey responses indicate that both older adults and clinicians are open to using exoskeletons, fall prevention and joint pain reduction are especially important features, and users are likely to wear an exoskeleton in the scenarios when it has the greatest opportunity to help prevent a fall. These findings can help inform future exoskeleton research and guide the development of devices that are accepted, used, and provide meaningful benefit to users.


Subject(s)
Exoskeleton Device , Humans , Aged , Walking/physiology , Accidental Falls/prevention & control , Lower Extremity/physiology
6.
PLoS Comput Biol ; 20(2): e1011410, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38394308

ABSTRACT

Musculoskeletal geometry and muscle volumes vary widely in the population and are intricately linked to the performance of tasks ranging from walking and running to jumping and sprinting. As an alternative to experimental approaches, where it is difficult to isolate factors and establish causal relationships, simulations can be used to independently vary musculoskeletal geometry and muscle volumes, and develop a fundamental understanding. However, our ability to understand how these parameters affect task performance has been limited due to the high computational cost of modelling the necessary complexity of the musculoskeletal system and solving the requisite multi-dimensional optimization problem. For example, sprinting and running are fundamental to many forms of sport, but past research on the relationships between musculoskeletal geometry, muscle volumes, and running performance has been limited to observational studies, which have not established cause-effect relationships, and simulation studies with simplified representations of musculoskeletal geometry. In this study, we developed a novel musculoskeletal simulator that is differentiable with respect to musculoskeletal geometry and muscle volumes. This simulator enabled us to find the optimal body segment dimensions and optimal distribution of added muscle volume for sprinting and marathon running. Our simulation results replicate experimental observations, such as increased muscle mass in sprinters, as well as a mass in the lower end of the healthy BMI range and a higher leg-length-to-height ratio in marathon runners. The simulations also reveal new relationships, for example showing that hip musculature is vital to both sprinting and marathon running. We found hip flexor and extensor moment arms were maximized to optimize sprint and marathon running performance, and hip muscles the main target when we simulated strength training for sprinters. Our simulation results provide insight to inspire future studies to examine optimal strength training. Our simulator can be extended to other athletic tasks, such as jumping, or to non-athletic applications, such as designing interventions to improve mobility in older adults or individuals with movement disorders.


Subject(s)
Athletic Performance , Resistance Training , Running , Humans , Aged , Running/physiology , Muscle, Skeletal/physiology , Walking/physiology , Athletic Performance/physiology
7.
Sci Rep ; 13(1): 21534, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057337

ABSTRACT

Muscle-driven simulations have provided valuable insights in studies of walking and running, but a set of freely available simulations and corresponding experimental data for cycling do not exist. The aim of this work was to develop a set of muscle-driven simulations of cycling and to validate them by comparison with experimental data. We used direct collocation to generate simulations of 16 participants cycling over a range of powers (40-216 W) and cadences (75-99 RPM) using two optimization objectives: a baseline objective that minimized muscle effort and a second objective that additionally minimized tibiofemoral joint forces. We tested the accuracy of the simulations by comparing the timing of active muscle forces in our baseline simulation to timing in experimental electromyography data. Adding a term in the objective function to minimize tibiofemoral forces preserved cycling power and kinematics, improved similarity between active muscle force timing and experimental electromyography, and decreased tibiofemoral joint reaction forces, which better matched previously reported in vivo measurements. The musculoskeletal models, muscle-driven simulations, simulation software, and experimental data are freely shared at https://simtk.org/projects/cycling_sim for others to reproduce these results and build upon this research.


Subject(s)
Muscle, Skeletal , Walking , Humans , Muscle, Skeletal/physiology , Walking/physiology , Electromyography , Knee Joint/physiology , Mechanical Phenomena , Biomechanical Phenomena , Models, Biological
8.
PLoS One ; 18(11): e0295152, 2023.
Article in English | MEDLINE | ID: mdl-38033114

ABSTRACT

Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subject's skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2 cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.


Subject(s)
Models, Biological , Musculoskeletal System , Humans , Biomechanical Phenomena , Walking , Motion
9.
PLoS Comput Biol ; 19(10): e1011462, 2023 10.
Article in English | MEDLINE | ID: mdl-37856442

ABSTRACT

Measures of human movement dynamics can predict outcomes like injury risk or musculoskeletal disease progression. However, these measures are rarely quantified in large-scale research studies or clinical practice due to the prohibitive cost, time, and expertise required. Here we present and validate OpenCap, an open-source platform for computing both the kinematics (i.e., motion) and dynamics (i.e., forces) of human movement using videos captured from two or more smartphones. OpenCap leverages pose estimation algorithms to identify body landmarks from videos; deep learning and biomechanical models to estimate three-dimensional kinematics; and physics-based simulations to estimate muscle activations and musculoskeletal dynamics. OpenCap's web application enables users to collect synchronous videos and visualize movement data that is automatically processed in the cloud, thereby eliminating the need for specialized hardware, software, and expertise. We show that OpenCap accurately predicts dynamic measures, like muscle activations, joint loads, and joint moments, which can be used to screen for disease risk, evaluate intervention efficacy, assess between-group movement differences, and inform rehabilitation decisions. Additionally, we demonstrate OpenCap's practical utility through a 100-subject field study, where a clinician using OpenCap estimated musculoskeletal dynamics 25 times faster than a laboratory-based approach at less than 1% of the cost. By democratizing access to human movement analysis, OpenCap can accelerate the incorporation of biomechanical metrics into large-scale research studies, clinical trials, and clinical practice.


Subject(s)
Models, Biological , Smartphone , Humans , Muscles/physiology , Software , Biomechanical Phenomena , Movement/physiology
10.
IEEE Robot Autom Lett ; 8(10): 6267-6274, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37745177

ABSTRACT

Connecting the legs with a spring attached to the shoelaces, called an exotendon, can reduce the energetic cost of running, but how the exotendon reduces the energetic burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the exotendon to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the exotendon. The seven of nine participants who reduced energy cost when running with the exotendon reduced their measured energy expenditure rate by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the exotendon reduced rates of energy expenditure for all seven individuals. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. By modeling muscle-level energetics, this simulation framework accurately captured measured changes in whole-body energetics when using an assistive device. This is a useful first step towards using simulation to accelerate device design by predicting how humans will interact with assistive devices that have yet to be built.

11.
J Appl Biomech ; 39(5): 273-283, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37751904

ABSTRACT

The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.

12.
PLoS Comput Biol ; 19(8): e1010712, 2023 08.
Article in English | MEDLINE | ID: mdl-37549183

ABSTRACT

Walking balance is central to independent mobility, and falls due to loss of balance are a leading cause of death for people 65 years of age and older. Bipedal gait is typically unstable, but healthy humans use corrective torques to counteract perturbations and stabilize gait. Exoskeleton assistance could benefit people with neuromuscular deficits by providing stabilizing torques at lower-limb joints to replace lost muscle strength and sensorimotor control. However, it is unclear how applied exoskeleton torques translate to changes in walking kinematics. This study used musculoskeletal simulation to investigate how exoskeleton torques applied to the ankle and subtalar joints alter center of mass kinematics during walking. We first created muscle-driven walking simulations using OpenSim Moco by tracking experimental kinematics and ground reaction forces recorded from five healthy adults. We then used forward integration to simulate the effect of exoskeleton torques applied to the ankle and subtalar joints while keeping muscle excitations fixed based on our previous tracking simulation results. Exoskeleton torque lasted for 15% of the gait cycle and was applied between foot-flat and toe-off during the stance phase, and changes in center of mass kinematics were recorded when the torque application ended. We found that changes in center of mass kinematics were dependent on both the type and timing of exoskeleton torques. Plantarflexion torques produced upward and backward changes in velocity of the center of mass in mid-stance and upward and smaller forward velocity changes near toe-off. Eversion and inversion torques primarily produced lateral and medial changes in velocity in mid-stance, respectively. Intrinsic muscle properties reduced kinematic changes from exoskeleton torques. Our results provide mappings between ankle plantarflexion and inversion-eversion torques and changes in center of mass kinematics which can inform designers building exoskeletons aimed at stabilizing balance during walking. Our simulations and software are freely available and allow researchers to explore the effects of applied torques on balance and gait.


Subject(s)
Ankle , Exoskeleton Device , Adult , Humans , Torque , Biomechanical Phenomena/physiology , Walking/physiology , Gait/physiology
13.
bioRxiv ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37398034

ABSTRACT

Creating large-scale public datasets of human motion biomechanics could unlock data-driven breakthroughs in our understanding of human motion, neuromuscular diseases, and assistive devices. However, the manual effort currently required to process motion capture data and quantify the kinematics and dynamics of movement is costly and limits the collection and sharing of large-scale biomechanical datasets. We present a method, called AddBiomechanics, to automate and standardize the quantification of human movement dynamics from motion capture data. We use linear methods followed by a non-convex bilevel optimization to scale the body segments of a musculoskeletal model, register the locations of optical markers placed on an experimental subject to the markers on a musculoskeletal model, and compute body segment kinematics given trajectories of experimental markers during a motion. We then apply a linear method followed by another non-convex optimization to find body segment masses and fine tune kinematics to minimize residual forces given corresponding trajectories of ground reaction forces. The optimization approach requires approximately 3-5 minutes to determine a subjects skeleton dimensions and motion kinematics, and less than 30 minutes of computation to also determine dynamically consistent skeleton inertia properties and fine-tuned kinematics and kinetics, compared with about one day of manual work for a human expert. We used AddBiomechanics to automatically reconstruct joint angle and torque trajectories from previously published multi-activity datasets, achieving close correspondence to expert-calculated values, marker root-mean-square errors less than 2cm, and residual force magnitudes smaller than 2% of peak external force. Finally, we confirmed that AddBiomechanics accurately reproduced joint kinematics and kinetics from synthetic walking data with low marker error and residual loads. We have published the algorithm as an open source cloud service at AddBiomechanics.org, which is available at no cost and asks that users agree to share processed and de-identified data with the community. As of this writing, hundreds of researchers have used the prototype tool to process and share about ten thousand motion files from about one thousand experimental subjects. Reducing the barriers to processing and sharing high-quality human motion biomechanics data will enable more people to use state-of-the-art biomechanical analysis, do so at lower cost, and share larger and more accurate datasets.

14.
J Biomech ; 154: 111623, 2023 06.
Article in English | MEDLINE | ID: mdl-37210923

ABSTRACT

Over the past half-century, musculoskeletal simulations have deepened our knowledge of human and animal movement. This article outlines ten steps to becoming a musculoskeletal simulation expert so you can contribute to the next half-century of technical innovation and scientific discovery. We advocate looking to the past, present, and future to harness the power of simulations that seek to understand and improve mobility. Instead of presenting a comprehensive literature review, we articulate a set of ideas intended to help researchers use simulations effectively and responsibly by understanding the work on which today's musculoskeletal simulations are built, following established modeling and simulation principles, and branching out in new directions.


Subject(s)
Movement , Animals , Humans , Computer Simulation
15.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066206

ABSTRACT

Connecting the legs with a spring attached to the shoelaces reduces the energy cost of running, but how the spring reduces the energy burden of individual muscles remains unknown. We generated muscle-driven simulations of seven individuals running with and without the spring to discern whether savings occurred during the stance phase or the swing phase, and to identify which muscles contributed to energy savings. We computed differences in muscle-level energy consumption, muscle activations, and changes in muscle-fiber velocity and force between running with and without the spring. Across participants, running with the spring reduced the measured rate of energy expenditure by 0.9 W/kg (8.3%). Simulations predicted a 1.4 W/kg (12.0%) reduction in the average rate of energy expenditure and correctly identified that the spring reduced rates of energy expenditure for all participants. Simulations showed most of the savings occurred during stance (1.5 W/kg), though the rate of energy expenditure was also reduced during swing (0.3 W/kg). The energetic savings were distributed across the quadriceps, hip flexor, hip abductor, hamstring, hip adductor, and hip extensor muscle groups, whereas no changes in the rate of energy expenditure were observed in the plantarflexor or dorsiflexor muscles. Energetic savings were facilitated by reductions in the rate of mechanical work performed by muscles and their estimated rate of heat production. The simulations provide insight into muscle-level changes that occur when utilizing an assistive device and the mechanisms by which a spring connecting the legs improves running economy.

16.
J Biomech ; 152: 111569, 2023 05.
Article in English | MEDLINE | ID: mdl-37058768

ABSTRACT

Medial knee contact force (MCF) is related to the pathomechanics of medial knee osteoarthritis. However, MCF cannot be directly measured in the native knee, making it difficult for therapeutic gait modifications to target this metric. Static optimization, a musculoskeletal simulation technique, can estimate MCF, but there has been little work validating its ability to detect changes in MCF induced by gait modifications. In this study, we quantified the error in MCF estimates from static optimization compared to measurements from instrumented knee replacements during normal walking and seven different gait modifications. We then identified minimum magnitudes of simulated MCF changes for which static optimization correctly identified the direction of change (i.e., whether MCF increased or decreased) at least 70% of the time. A full-body musculoskeletal model with a multi-compartment knee and static optimization was used to estimate MCF. Simulations were evaluated using experimental data from three subjects with instrumented knee replacements who walked with various gait modifications for a total of 115 steps. Static optimization underpredicted the first peak (mean absolute error = 0.16 bodyweights) and overpredicted the second peak (mean absolute error = 0.31 bodyweights) of MCF. Average root mean square error in MCF over stance phase was 0.32 bodyweights. Static optimization detected the direction of change with at least 70% accuracy for early-stance reductions, late-stance reductions, and early-stance increases in peak MCF of at least 0.10 bodyweights. These results suggest that a static optimization approach accurately detects the direction of change in early-stance medial knee loading, potentially making it a valuable tool for evaluating the biomechanical efficacy of gait modifications for knee osteoarthritis.


Subject(s)
Gait , Knee Joint , Osteoarthritis, Knee , Osteoarthritis, Knee/physiopathology , Knee Joint/physiopathology , Walking , Arthroplasty, Replacement, Knee , Humans , Male , Female , Computer Simulation
17.
NPJ Digit Med ; 6(1): 32, 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36871119

ABSTRACT

Physical function decline due to aging or disease can be assessed with quantitative motion analysis, but this currently requires expensive laboratory equipment. We introduce a self-guided quantitative motion analysis of the widely used five-repetition sit-to-stand test using a smartphone. Across 35 US states, 405 participants recorded a video performing the test in their homes. We found that the quantitative movement parameters extracted from the smartphone videos were related to a diagnosis of osteoarthritis, physical and mental health, body mass index, age, and ethnicity and race. Our findings demonstrate that at-home movement analysis goes beyond established clinical metrics to provide objective and inexpensive digital outcome metrics for nationwide studies.

18.
NPJ Digit Med ; 6(1): 46, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934194

ABSTRACT

Anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) surgery are common. Laboratory-based biomechanical assessment can evaluate ACL injury risk and rehabilitation progress after ACLR; however, lab-based measurements are expensive and inaccessible to most people. Portable sensors such as wearables and cameras can be deployed during sporting activities, in clinics, and in patient homes. Although many portable sensing approaches have demonstrated promising results during various assessments related to ACL injury, they have not yet been widely adopted as tools for out-of-lab assessment. The purpose of this review is to summarize research on out-of-lab portable sensing applied to ACL and ACLR and offer our perspectives on new opportunities for future research and development. We identified 49 original research articles on out-of-lab ACL-related assessment; the most common sensing modalities were inertial measurement units, depth cameras, and RGB cameras. The studies combined portable sensors with direct feature extraction, physics-based modeling, or machine learning to estimate a range of biomechanical parameters (e.g., knee kinematics and kinetics) during jump-landing tasks, cutting, squats, and gait. Many of the reviewed studies depict proof-of-concept methods for potential future clinical applications including ACL injury risk screening, injury prevention training, and rehabilitation assessment. By synthesizing these results, we describe important opportunities that exist for clinical validation of existing approaches, using sophisticated modeling techniques, standardization of data collection, and creation of large benchmark datasets. If successful, these advances will enable widespread use of portable-sensing approaches to identify ACL injury risk factors, mitigate high-risk movements prior to injury, and optimize rehabilitation paradigms.

19.
J Med Internet Res ; 25: e40529, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36696172

ABSTRACT

BACKGROUND: There is some initial evidence suggesting that mindsets about the adequacy and health consequences of one's physical activity (activity adequacy mindsets [AAMs]) can shape physical activity behavior, health, and well-being. However, it is unknown how to leverage these mindsets using wearable technology and other interventions. OBJECTIVE: This research examined how wearable fitness trackers and meta-mindset interventions influence AAMs, affect, behavior, and health. METHODS: A total of 162 community-dwelling adults were recruited via flyers and web-based platforms (ie, Craigslist and Nextdoor; final sample size after attrition or exclusion of 45 participants). Participants received an Apple Watch (Apple Inc) to wear for 5 weeks, which was equipped with an app that recorded step count and could display a (potentially manipulated) step count on the watch face. After a baseline week of receiving no feedback about step count, participants were randomly assigned to 1 of 4 experimental groups: they received either accurate step count (reference group; 41/162, 25.3%), 40% deflated step count (40/162, 24.7%), 40% inflated step count (40/162, 24.7%), or accurate step count+a web-based meta-mindset intervention teaching participants the value of adopting more positive AAMs (41/162, 25.3%). Participants were blinded to the condition. Outcome measures were taken in the laboratory by an experimenter at the beginning and end of participation and via web-based surveys in between. Longitudinal analysis examined changes within the accurate step count condition from baseline to treatment and compared them with changes in the deflated step count, inflated step count, and meta-mindset conditions. RESULTS: Participants receiving accurate step counts perceived their activity as more adequate and healthier, adopted a healthier diet, and experienced improved mental health (Patient-Reported Outcomes Measurement Information System [PROMIS]-29) and aerobic capacity but also reduced functional health (PROMIS-29; compared with their no-step-count baseline). Participants exposed to deflated step counts perceived their activity as more inadequate; ate more unhealthily; and experienced more negative affect, reduced self-esteem and mental health, and increased blood pressure and heart rate (compared with participants receiving accurate step counts). Inflated step counts did not change AAM or most other outcomes (compared with accurate step counts). Participants receiving the meta-mindset intervention experienced improved AAM, affect, functional health, and self-reported physical activity (compared with participants receiving accurate step counts only). Actual step count did not change in either condition. CONCLUSIONS: AAMs--induced by trackers or adopted deliberately--can influence affect, behavior, and health independently of actual physical activity. TRIAL REGISTRATION: ClinicalTrials.gov NCT03939572; https://www.clinicaltrials.gov/ct2/show/NCT03939572.


Subject(s)
Fitness Trackers , Wearable Electronic Devices , Adult , Humans , Exercise/psychology , Motor Activity , Outcome Assessment, Health Care
20.
Lancet ; 401(10372): 187, 2023 01 21.
Article in English | MEDLINE | ID: mdl-36681408

Subject(s)
Tremor , Humans , Tremor/etiology
SELECTION OF CITATIONS
SEARCH DETAIL