Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Leukemia ; 34(5): 1253-1265, 2020 05.
Article in English | MEDLINE | ID: mdl-31768018

ABSTRACT

MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/pathology , MicroRNAs/genetics , Myeloid Cells/pathology , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Animals , Apoptosis , CRISPR-Cas Systems , Cell Differentiation , Cell Proliferation , Female , Hematopoiesis , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Myeloid Cells/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Tumor Cells, Cultured
2.
Leuk Lymphoma ; 60(2): 409-417, 2019 02.
Article in English | MEDLINE | ID: mdl-30068244

ABSTRACT

Mutations in NPM1 can be used for minimal residual disease (MRD) analysis in acute myeloid leukemia (AML). We here applied a newly introduced method, deep sequencing, allowing for simultaneous analysis of all recurrent NPM1 insertions and thus constituting an attractive alternative to multiple PCRs for the clinical laboratory. We retrospectively used deep sequencing for measurement of MRD pre- and post-allogeneic hematopoietic stem cell transplantation (alloHCT). For 29 patients in morphological remission at the time of alloHCT, the effect of deep sequencing MRD on outcome was assessed. MRD positivity was defined as variant allele frequency ≥0.02%. Post-transplant MRD status was significantly and independently associated with clinical outcome; 3-year relapse-free survival 20% vs 85% (p < .001), HR 45 (95% CI 2-1260), and overall survival 20% vs 89% (p < .001), HR 49 (95% CI 2-1253). Thus, the new methodology deep sequencing is an applicable and predictive tool for MRD assessment in AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Neoplasm, Residual/genetics , Nuclear Proteins/genetics , Biomarkers, Tumor , Female , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Nucleophosmin , Proportional Hazards Models , Retrospective Studies , Transplantation, Homologous
3.
J Mol Diagn ; 21(1): 149-162, 2019 01.
Article in English | MEDLINE | ID: mdl-30273780

ABSTRACT

Minimal residual disease (MRD) in acute myeloid leukemia (AML) is of major prognostic importance. The genetic landscape of AML is characterized by numerous somatic mutations, which constitute potential MRD markers. Leukemia-specific mutations can be identified with exome sequencing at diagnosis and assessed during follow-up at low frequencies by using targeted deep sequencing. Our aim was to further validate this patient-tailored assay for substitution mutations. By applying a statistical model, which corrects for position-specific errors, a limit of detection for single nucleotide variations of variant allele frequency (VAF) of 0.02% was achieved. The assay was linear in MRD range (0.03% to 1%) with good precision [CV, 4.1% (2.2% to 5.7%) at VAF 1% and 13.3% (8.8% to 19.4%) at VAF 0.1%], and low relative bias [7.9% (2.5% to 15.3%) at VAF 1%]. When applied to six childhood AML cases and compared with multiparameter flow cytometry for MRD analysis, deep sequencing showed concordance and superior sensitivity. Further high concordance was found with expression of fusion transcripts RUNX1-RUNX1T1 and KMT2A-MLLT10. The deep sequencing assay also detected mutations in blood when VAF in bone marrow exceeded 0.1% (n = 19). In conclusion, deep sequencing enables reliable detection of low levels of residual leukemic cells. Introduction of this method in patient care will allow for highly sensitive MRD surveillance in virtually every patient with AML.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/genetics , Polymorphism, Single Nucleotide , Adolescent , Child , Child, Preschool , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Frequency , Humans , Infant , Leukemia, Myeloid, Acute/diagnosis , Male , Mutation , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Oncogene Proteins, Fusion/genetics , RUNX1 Translocation Partner 1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...