Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785987

ABSTRACT

Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus, and it is associated with alterations in the expression of hormone receptors and inflammation. Estetrol (E4) is a weak estrogen that recently has been approved for contraception. We evaluated the effect of E4 on the growth of endometriotic-like lesions and the expression of TNF-α, estrogen receptors (ERs), and progesterone receptors (PRs) in an in vivo murine model. Endometriosis was induced surgically in female C57BL/6 mice. E4 was delivered via Alzet pump (3 mg/kg/day) from the 15th postoperative day for 4 weeks. E4 significantly reduced the volume (p < 0.001) and weight (p < 0.05) of ectopic lesions. Histologically, E4 did not affect cell proliferation (PCNA immunohistochemistry) but it did increase cell apoptosis (TUNEL assay) (p < 0.05). Furthermore, it modulated oxidative stress (SOD, CAT, and GPX activity, p < 0.05) and increased lipid peroxidation (TBARS/MDA, p < 0.01). Molecular analysis showed mRNA (RT-qPCR) and protein (ELISA) expression of TNF-α decreased (p < 0.05) and mRNA expression of Esr2 reduced (p < 0.05), in contrast with the increased expression of Esr1 (p < 0.01) and Pgr (p < 0.05). The present study demonstrates for the first time that E4 limited the development and progression of endometriosis in vivo.


Subject(s)
Disease Models, Animal , Endometriosis , Estetrol , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha , Animals , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/drug therapy , Female , Mice , Estetrol/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Lipid Peroxidation/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics
2.
Sci Rep ; 13(1): 10354, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365216

ABSTRACT

The TNF-α/TNFR system is involved in endometriosis (EDT), a gynecologic estrogen-dependent disease. Elevated copper concentrations have also been associated with EDT, even in TNFR1-deficient mice where disease worsening occurs. We aimed to evaluate whether treatment with ammonium tetrathiomolybdate (TM, copper chelator) is beneficial in TNFR1-deficient mice presenting with worsened EDT status. Female C57BL/6 mice were divided into three groups: KO Sham, KO EDT, and KO EDT+TM. TM was administered from the 15th postoperative day, and samples were collected one month after inducing pathology. In peritoneal fluid, copper and estradiol levels were determined by electrothermal atomic absorption spectrometry and electrochemiluminescence, respectively. Lesions were processed for the analysis of cell proliferation (PCNA immunohistochemistry), expression of angiogenic markers (RT-qPCR), and oxidative stress (spectrophotometric methods). We found that EDT increased copper and estradiol levels compared to the KO Sham group, while the TM administration restored the levels of both factors. TM also reduced the volume and weight of the lesions and cell proliferation rate. Besides, TM treatment decreased the number of blood vessels and the Vegfa, Fgf2, and Pdgfb expression. Furthermore, superoxide dismutase and catalase activity decreased, and lipid peroxidation increased. TM administration inhibits EDT progression in TNFR1-deficient mice where the pathology is exacerbated.


Subject(s)
Endometriosis , Receptors, Tumor Necrosis Factor, Type I , Humans , Mice , Female , Animals , Receptors, Tumor Necrosis Factor, Type I/metabolism , Copper/metabolism , Endometriosis/metabolism , Mice, Inbred C57BL , Chelating Agents/pharmacology , Estradiol
3.
Syst Biol Reprod Med ; 69(2): 87-100, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689562

ABSTRACT

There is evidence of the existence of an intraovarian gonadotropin-releasing hormone (GnRH) system. There are also reports about the influence of extrinsic ovarian innervation in gonadal function. Therefore, it is interesting to study the relationship between ovarian sympathetic innervation and GnRH to shed light on possible physiological and pathophysiological implications. This work aimed to investigate whether noradrenergic stimulation of the superior mesenteric ganglion (SMG) can modify the levels of ovarian GnRH and cause functional and morphological changes in the gonad through the ovarian plexus nerve (OPN), during estrus and diestrus II in rats. The SMG-OPN-Ovary system and an ovary without extrinsic innervation were removed from Holtzman rats in estrus and diestrus II stages and placed in specially designed cuvettes containing Krebs-Ringer buffer. In the experimental groups, SMGs and denervated ovaries were stimulated with 10-6 M noradrenaline (NA). GnRH and progesterone levels (in the ovarian incubation medium) and the mRNA expression of 3beta-hydroxysteroid dehydrogenase (Hsd3b3), 20alpha-hydroxysteroid dehydrogenase (Akr1c18), Bax, and Bcl2 were analyzed. Histological studies of the ovaries were performed. In estrus, NA decreased GnRH levels in both experimental schemes. Furthermore, progesterone levels increased while the Akr1c18 expression and Bax/Bcl2 ratio decreased, without causing changes in ovarian morphology. In diestrus, the noradrenergic stimulation of the ganglion increased GnRH levels, decreased progesterone levels, and increased Akr1c18 expression and Bax/Bcl2 ratio. Follicles with histoarchitecture alterations and corpus luteum with signs of cell death were observed. In denervated ovaries, NA increased the levels of GnRH and progesterone. Furthermore, NA decreased the Bax/Bcl2 ratio and histological studies revealed signs compatible with a possible atretogenic effect. In conclusion, noradrenergic stimulation of the SMG-OPN pathway regulates ovarian cyclicity. The SMG modulates the cross-talk between NA and ovarian GnRH, protecting the ovary from atretogenic effects and luteal apoptosis during estrus while inducing luteal regression in the diestrus II.


Subject(s)
Ovary , Progesterone , Female , Rats , Animals , Ovary/metabolism , Progesterone/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology , Gonadotropin-Releasing Hormone/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-bcl-2/metabolism , Hydroxysteroid Dehydrogenases/metabolism
4.
Reprod Biol Endocrinol ; 20(1): 19, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081973

ABSTRACT

BACKGROUND: Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS: The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS: The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3ß-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION: Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.


Subject(s)
Corpus Luteum/innervation , Corpus Luteum/metabolism , Gonadotropin-Releasing Hormone/metabolism , Nitric Oxide/metabolism , Animals , Drug Interactions , Female , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/metabolism , Gestational Age , Gonadotropin-Releasing Hormone/pharmacology , Nervous System/drug effects , Nervous System/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Nitric Oxide/pharmacology , Ovary/innervation , Ovary/metabolism , Pregnancy , Rats
5.
Life Sci ; 287: 120099, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34715139

ABSTRACT

AIMS: Copper (Cu) is involved in the endometriosis progression. Herein, an experimental endometriosis model was used to evaluate whether its chelation with ammonium tetrathiomolybdate (TM) affects the proliferation and angiogenesis in endometriotic-like lesions and the participation of oxidative stress in these processes. MAIN METHODS: Female C57BL/6 mice were divided into three groups: sham-operated mice, endometriosis-induced mice, and TM-treated endometriosis-induced mice. Each animal in the third group received 0.3 mg of TM/day in their drinking water from the postoperative 15th day. The samples were collected after one month of induced pathology. In peritoneal fluids, Cu and estradiol levels were determined by electrothermal atomic absorption spectrometry and electrochemiluminescence, respectively. Endometriotic-like lesions were processed for the analysis of cell proliferation by PCNA immunohistochemistry, the expression of angiogenic markers by RT-qPCR, the presence of endothelial cells by immunofluorescent staining, and oxidative stress applying spectrophotometric methods. KEY FINDINGS: TM treatment decreased Cu and estradiol levels, which were increased by this pathology. In lesions, TM induced: (a) a decrease in tissue weight and volume, (b) a decrease in PCNA-positive cells, (c) antiangiogenic effects by decreasing the number of blood vessels, the mRNA expression of fibroblast growth factor 2 (Fgf2) and platelet-derived growth factor subunit B (Pdgfb), and the presence of endothelial cells, (d) a decrease in antioxidant activity and an increase in lipid peroxidation. SIGNIFICANCE: TM is a highly effective antiproliferative and antiangiogenic agent, modulating oxidative imbalance in endometriosis. Its anti-endometriotic potential is an attractive feature of TM as a possible non-hormonal treatment.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Cell Proliferation/drug effects , Disease Models, Animal , Endometriosis/drug therapy , Molybdenum/therapeutic use , Angiogenesis Inhibitors/pharmacology , Animals , Cell Proliferation/physiology , Endometriosis/pathology , Female , Mice , Mice, Inbred C57BL , Molybdenum/pharmacology
6.
Cell Tissue Res ; 384(2): 487-498, 2021 May.
Article in English | MEDLINE | ID: mdl-33779845

ABSTRACT

The GnRH/GnRH receptor system has been found in several extrapituitary tissues, although its physiological significance has not yet been well established. Taking into account that the peripheral neural system can act as a modulator of pregnancy corpus luteum, the objective was to physiologically investigate the presence of the GnRH system in coeliac ganglion (CG) and to analyse its possible involvement in luteal regression through the superior ovarian nerve (SON) at the end of pregnancy in the rat. The integrated ex vivo CG-SON-Ovary system of rats on day 21 of pregnancy was used. Cetrorelix (CTX), a GnRH receptor antagonist, was added into the ganglionic compartment while the control systems were untreated. Ganglionic GnRH release was detected under basal conditions. Then, the CTX addition in CG increased it, which would indicate the blockade of the receptor. In turn, CTX in CG caused an increase in ovarian progesterone release. Furthermore, the luteal cells showed an increase in the expression of Hsd3b1 and a decrease in the expression of Akr1c3 (progesterone synthesis and degradation enzymes, respectively), reduced TUNEL staining according to an increase in the antioxidant defence system activity and low lipid peroxide levels. The ovarian and ganglionic nitric oxide (NO) release increased, while the luteal nitrotyrosine content, measured as nitrosative stress marker, decreased. CTX in CG decreased the ovarian noradrenaline release. The present study provides evidence that GnRH from CG may trigger neuronal signals that promote the luteal regression in late pregnancy by affecting the release of NO and noradrenaline in the ovary.


Subject(s)
Corpus Luteum/drug effects , Ganglia, Sympathetic/metabolism , Gonadotropin-Releasing Hormone/metabolism , Animals , Disease Models, Animal , Female , Pregnancy , Rats
7.
Neuroscience ; 458: 99-107, 2021 03 15.
Article in English | MEDLINE | ID: mdl-32827572

ABSTRACT

Accumulation of amyloid peptides in the brain plays a key role in the pathogenesis of Alzheimer's disease (AD). Aggregated beta-amyloid (Aß) peptide increases intracellular reactive oxygen species associated to a deficient antioxidant defense system. Prefrontal cortex plays a key role in memory and learning and is especially susceptible to oxidative stress. The objective of this work was to investigate the effects of an intracerebroventricular (i.c.v.) injection of Aß (1-42) on 24 h patterns of oxidative stress parameters and antioxidant defenses in the rat prefrontal cortex. Four-month-old male Holtzman rats were divided into two groups defined as: control (CO) and Aß-injected (Aß). Rats were maintained under12 h-light:12 h-dark conditions and received water and food ad libitum. Tissues samples were isolated every 6 h during a 24 h period. Interestingly, we found that an i.c.v. injection of Aß(1-42) increased lipid peroxidation, reduced total antioxidant capacity level, phase-shifted the daily peak of reduced glutathione, and had a differential effect on the oscillating catalase and glutathione peroxidase specific activity. Thus, elevated levels of Aß aggregates-a pathogenic hallmark of AD, caused altered temporal patterns of the cellular redox state in prefrontal cortex rat. These findings might contribute, at least in part, to the understanding of the molecular and biochemical basis of redox changes caused by circadian rhythms alterations observed in AD patients.


Subject(s)
Alzheimer Disease , Hippocampus , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Humans , Male , Oxidative Stress , Peptide Fragments/metabolism , Prefrontal Cortex/metabolism , Rats
8.
J Endocrinol ; 234(3): 269-278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28676525

ABSTRACT

Endometriosis is an inflammatory disease depending on estradiol, with TNF-α being one of the most representative cytokines involved in its pathogenesis. TNF-α acts through its bond to the TNFRp55 and TNFRp75 membrane receptors. The aim of this study was to analyze the effect of the TNFRp55 deficiency on the development of ectopic endometriotic-like lesions. Endometriosis was induced surgically in mice of the C57BL/6 strain, wild type (WT) and TNFRp55-/- (KO). After four weeks, the peritoneal fluid was collected and the lesions were counted, measured with a caliper, removed, weighed, fixed or kept at -80°C. We evaluated the cell proliferation by proliferating cell nuclear antigen (PCNA) immunohistochemistry and apoptosis by TUNEL technique in the ectopic lesions. MMP-2 and MMP-9 activities (factors involved in invasiveness) were measured by zymography in the peritoneal fluid; estradiol and progesterone levels were measured by radioimmunoassay in the lesions and in the peritoneal fluid. We found that in KO animals the mean number of lesions established per mouse, the lesion volume, weight and cell proliferation increased and apoptosis decreased. In addition, the activity of MMP-2 and the estradiol level increased, whereas the progesterone level was not significantly modified. In conclusion, the deficiency of TNFRp55 promoted the establishment and development of endometriosis through an increase in the lesion size and high levels of estradiol which correlate with an increase in the MMP-2 activity. This is evidence of the possible association of the deregulation of the TNFRp55 expression and the survival of the endometriotic tissue in ectopic sites.


Subject(s)
Endometriosis/metabolism , Endometrium/growth & development , Receptors, Tumor Necrosis Factor, Type I/deficiency , Tumor Necrosis Factor Decoy Receptors/deficiency , Animals , Cell Proliferation , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Endometriosis/physiopathology , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor Decoy Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL