Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Gut ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740509

ABSTRACT

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.

2.
Mol Metab ; 83: 101930, 2024 May.
Article in English | MEDLINE | ID: mdl-38570069

ABSTRACT

OBJECTIVE: Tumour progression drives profound alterations in host metabolism, such as adipose tissue depletion, an early event of cancer cachexia. As fatty acid consumption by cancer cells increases upon acidosis of the tumour microenvironment, we reasoned that fatty acids derived from distant adipose lipolysis may sustain tumour fatty acid craving, leading to the adipose tissue loss observed in cancer cachexia. METHODS: To evaluate the pro-lipolytic capacities of acid-exposed cancer cells, primary mouse adipocytes from subcutaneous and visceral adipose tissue were exposed to pH-matched conditioned medium from human and murine acid-exposed cancer cells (pH 6.5), compared to naive cancer cells (pH 7.4). To further address the role of tumoral acidosis on adipose tissue loss, a pH-low insertion peptide was injected into tumour-bearing mice, and tumoral acidosis was neutralised with a sodium bicarbonate buffer. Prolipolytic mediators were identified by transcriptomic approaches and validated on murine and human adipocytes. RESULTS: Here, we reveal that acid-exposed cancer cells promote lipolysis from subcutaneous and visceral adipocytes and that dampening acidosis in vivo inhibits adipose tissue depletion. We further found a set of well-known prolipolytic factors enhanced upon acidosis adaptation and unravelled a role for ß-glucuronidase (GUSB) as a promising new actor in adipocyte lipolysis. CONCLUSIONS: Tumoral acidosis promotes the mobilization of fatty acids derived from adipocytes via the release of soluble factors by cancer cells. Our work paves the way for therapeutic approaches aimed at tackling cachexia by targeting the tumour acidic compartment.


Subject(s)
Acidosis , Adipocytes , Adipose Tissue , Cachexia , Lipolysis , Animals , Mice , Acidosis/metabolism , Adipocytes/metabolism , Humans , Adipose Tissue/metabolism , Cachexia/metabolism , Male , Tumor Microenvironment , Cell Line, Tumor , Mice, Inbred C57BL , Fatty Acids/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Female , Glucuronidase/metabolism , Hydrogen-Ion Concentration
3.
Haematologica ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546675

ABSTRACT

The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukaemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with cachectic hallmarks. Biological samples and clinical data were collected from 30 antibiotic-free AML patients at diagnosis and matched volunteers (1:1) in a multicenter cross-sectional prospective study. The composition and functional potential of the faecal microbiota were analyzed using shotgun metagenomics. Faecal, blood, and urine metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycaemic disorders. The composition of the faecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and faecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g. Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycaemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.

4.
Diabetologia ; 67(2): 333-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897566

ABSTRACT

AIMS/HYPOTHESIS: We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS: Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS: D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION: D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL: NCT03852069.


Subject(s)
Clostridiales , Diabetes Mellitus, Type 2 , Metformin , Humans , Animals , Mice , Metformin/therapeutic use , Metformin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Diet, High-Fat
5.
Clin Nutr ; 43(1): 268-283, 2024 01.
Article in English | MEDLINE | ID: mdl-38104489

ABSTRACT

BACKGROUND & AIMS: The European Society for Clinical Nutrition and Metabolism published its first clinical guidelines for use of micronutrients (MNs) in 2022. A two-day web symposium was organized in November 2022 discussing how to apply the guidelines in clinical practice. The present paper reports the main findings of this symposium. METHODS: Current evidence was discussed, the first day being devoted to clarifying the biology underlying the guidelines, especially regarding the definition of deficiency, the impact of inflammation, and the roles in antioxidant defences and immunity. The second day focused on clinical situations with high prevalence of MN depletion and deficiency. RESULTS: The importance of the determination of MN status in patients at risk and diagnosis of deficiencies is still insufficiently perceived, considering the essential role of MNs in immune and antioxidant defences. Epidemiological data show that deficiencies of several MNs (iron, iodine, vitamin D) are a global problem that affects human health and well-being including immune responses such as to vaccination. Clinical conditions frequently associated with MN deficiencies were discussed including cancer, obesity with impact of bariatric surgery, diseases of the gastrointestinal tract, critical illness, and aging. In all these conditions, MN deficiency is associated with worsening of outcomes. The recurrent problem of shortage of MN products, but also lack of individual MN-products is a worldwide problem. CONCLUSION: Despite important progress in epidemiology and clinical nutrition, numerous gaps in practice persist. MN depletion and deficiency are frequently insufficiently searched for in clinical conditions, leading to inadequate treatment. The symposium concluded that more research and continued education are required to improve patient outcome.


Subject(s)
Iron Deficiencies , Micronutrients , Humans , Antioxidants , Vitamins , Iron
6.
Clin Nutr ; 42(11): 2214-2228, 2023 11.
Article in English | MEDLINE | ID: mdl-37806074

ABSTRACT

BACKGROUND & AIMS: Acute myeloid leukaemia (AML) chemotherapy has been reported to impact gut microbiota composition. In this study, we investigated using a multi -omics strategy the changes in the gut microbiome induced by AML intense therapy and their association with gut barrier function and cachectic hallmarks. METHODS: 10 AML patients, allocated to standard induction chemotherapy (SIC), were recruited. Samples and data were collected before any therapeutic intervention (T0), at the end of the SIC (T1) and at discharge (T4). Gut microbiota composition and function, markers of inflammation, metabolism, gut barrier function and cachexia, as well as faecal, blood and urine metabolomes were assessed. RESULTS: AML patients demonstrated decreased appetite, weight loss and muscle wasting during hospitalization, with an incidence of cachexia of 50%. AML intensive treatment transiently impaired the gut barrier function and led to a long-lasting change of gut microbiota composition characterized by an important loss of diversity. Lactobacillaceae and Campylobacter concisus were increased at T1 while Enterococcus faecium and Staphylococcus were increased at T4. Metabolomics analyses revealed a reduction in urinary hippurate and faecal bacterial amino acid metabolites (bAAm) (2-methylbutyrate, isovalerate, phenylacetate). Integration using DIABLO revealed a deep interconnection between all the datasets. Importantly, we identified bacteria which disappearance was associated with impaired gut barrier function (Odoribacter splanchnicus) and body weight loss (Gemmiger formicilis), suggesting these bacteria as actionable targets. CONCLUSION: AML intensive therapy transiently impairs the gut barrier function while inducing enduring alterations in the composition and metabolic activity of the gut microbiota that associate with body weight loss. TRIAL REGISTRATION: NCT03881826, https://clinicaltrials.gov/ct2/show/NCT03881826.


Subject(s)
Gastrointestinal Microbiome , Leukemia, Myeloid, Acute , Humans , Gastrointestinal Microbiome/physiology , Cachexia , Weight Loss , Metabolomics , Leukemia, Myeloid, Acute/drug therapy
7.
J Lipid Res ; 64(10): 100437, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37648213

ABSTRACT

The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.

8.
J Cachexia Sarcopenia Muscle ; 14(3): 1569-1582, 2023 06.
Article in English | MEDLINE | ID: mdl-37127348

ABSTRACT

BACKGROUND: The aryl hydrocarbon receptor (AHR) is expressed in the intestine and liver, where it has pleiotropic functions and target genes. This study aims to explore the potential implication of AHR in cancer cachexia, an inflammatory and metabolic syndrome contributing to cancer death. Specifically, we tested the hypothesis that targeting AHR can alleviate cachectic features, particularly through the gut-liver axis. METHODS: AHR pathways were explored in multiple tissues from four experimental mouse models of cancer cachexia (C26, BaF3, MC38 and APCMin/+ ) and from non-cachectic mice (sham-injected mice and non-cachexia-inducing [NC26] tumour-bearing mice), as well as in liver biopsies from cancer patients. Cachectic mice were treated with an AHR agonist (6-formylindolo(3,2-b)carbazole [FICZ]) or an antibody neutralizing interleukin-6 (IL-6). Key mechanisms were validated in vitro on HepG2 cells. RESULTS: AHR activation, reflected by the expression of Cyp1a1 and Cyp1a2, two major AHR target genes, was deeply reduced in all models (C26 and BaF3, P < 0.001; MC38 and APCMin/+ , P < 0.05) independently of anorexia. This reduction occurred early in the liver (P < 0.001; before the onset of cachexia), compared to the ileum and skeletal muscle (P < 0.01; pre-cachexia stage), and was intrinsically related to cachexia (C26 vs. NC26, P < 0.001). We demonstrate a differential modulation of AHR activation in the liver (through the IL-6/hypoxia-inducing factor 1α pathway) compared to the ileum (attributed to the decreased levels of indolic AHR ligands, P < 0.001), and the muscle. In cachectic mice, FICZ treatment reduced hepatic inflammation: expression of cytokines (Ccl2, P = 0.005; Cxcl2, P = 0.018; Il1b, P = 0.088) with similar trends at the protein levels, expression of genes involved in the acute-phase response (Apcs, P = 0.040; Saa1, P = 0.002; Saa2, P = 0.039; Alb, P = 0.003), macrophage activation (Cd68, P = 0.038) and extracellular matrix remodelling (Fga, P = 0.008; Pcolce, P = 0.025; Timp1, P = 0.003). We observed a decrease in blood glucose in cachectic mice (P < 0.0001), which was also improved by FICZ treatment (P = 0.026) through hepatic transcriptional promotion of a key marker of gluconeogenesis, namely, G6pc (C26 vs. C26 + FICZ, P = 0.029). Strikingly, these benefits on glycaemic disorders occurred independently of an amelioration of the gut barrier dysfunction. In cancer patients, the hepatic expression of G6pc was correlated to Cyp1a1 (Spearman's ρ = 0.52, P = 0.089) and Cyp1a2 (Spearman's ρ = 0.67, P = 0.020). CONCLUSIONS: With this set of studies, we demonstrate that impairment of AHR signalling contributes to hepatic inflammatory and metabolic disorders characterizing cancer cachexia, paving the way for innovative therapeutic strategies in this context.


Subject(s)
Interleukin-6 , Neoplasms , Mice , Animals , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Neoplasms/metabolism
9.
Eur J Nutr ; 62(6): 2633-2648, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222787

ABSTRACT

PURPOSE: The aim of this pilot study was to analyze concomitantly the kinetics of production of 13C-labeled gut-derived metabolites from 13C-labeled wheat bran in three biological matrices (breath, plasma, stools), in order to assess differential fermentation profiles among subjects. METHODS: Six healthy women consumed a controlled breakfast containing 13C-labeled wheat bran biscuits. H2, CH4 and 13CO2, 13CH4 24 h-concentrations in breath were measured, respectively, by gas chromatography (GC) and GC-isotope ratio mass spectrometry (GC-IRMS). Plasma and fecal concentrations of 13C-short-chain fatty acids (linear SCFAs: acetate, propionate, butyrate, valerate; branched SCFAs: isobutyrate, isovalerate) were quantified using GC-combustion-IRMS. Gut microbiota composition was assessed by16S rRNA gene sequencing analysis. RESULTS: H2 and CH4 24 h-kinetics distinguished two groups in terms of fermentation-related gas excretion: high-CH4 producers vs low-CH4 producers (fasting concentrations: 45.3 ± 13.6 ppm vs 6.5 ± 3.6 ppm). Expired 13CH4 was enhanced and prolonged in high-CH4 producers compared to low-CH4 producers. The proportion of plasma and stool 13C-butyrate tended to be higher in low-CH4 producers, and inversely for 13C-acetate. Plasma branched SCFAs revealed different kinetics of apparition compared to linear SCFAs. CONCLUSION: This pilot study allowed to consider novel procedures for the development of biomarkers revealing dietary fiber-gut microbiota interactions. The non-invasive assessment of exhaled gas following 13C-labeled fibers ingestion enabled to decipher distinct fermentation profiles: high-CH4 producers vs low-CH4 producers. The isotope labeling permits a specific in vivo characterisation of the dietary fiber impact consumption on microbiota metabolite production. CLINICAL TRIAL REGISTRATION: The study has been registered under the number NCT03717311 at ClinicalTrials.gov on October 24, 2018.


Subject(s)
Dietary Fiber , Fatty Acids, Volatile , Female , Humans , Butyrates/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Feces/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry , Pilot Projects
10.
Cells ; 12(3)2023 01 25.
Article in English | MEDLINE | ID: mdl-36766753

ABSTRACT

Obesity is associated with a cluster of metabolic disorders, chronic low-grade inflammation, altered gut microbiota, increased intestinal permeability, and alterations of the lipid mediators of the expanded endocannabinoid (eCB) signaling system, or endocannabinoidome (eCBome). In the present study, we characterized the profile of the eCBome and related oxylipins in the small and large intestines of genetically obese (ob/ob) and diabetic (db/db) mice to decipher possible correlations between these mediators and intestinal inflammation and gut microbiota composition. Basal lipid and gene expression profiles, measured by LC/MS-MS-based targeted lipidomics and qPCR transcriptomics, respectively, highlighted a differentially altered intestinal eCBome and oxylipin tone, possibly linked to increased mRNA levels of inflammatory markers in db/db mice. In particular, the duodenal levels of several 2-monoacylglycerols and N-acylethanolamines were increased and decreased, respectively, in db/db mice, which displayed more pronounced intestinal inflammation. To a little extent, these differences were explained by changes in the expression of the corresponding metabolic enzymes. Correlation analyses suggested possible interactions between eCBome/oxylipin mediators, cytokines, and bacterial components and bacterial taxa closely related to intestinal inflammation. Collectively, this study reveals that db/db mice present a higher inflammatory state in the intestine as compared to ob/ob mice, and that this difference is associated with profound and potentially adaptive or maladaptive, and partly intestinal segment-specific alterations in eCBome and oxylipin signaling. This study opens the way to future investigations on the biological role of several poorly investigated eCBome mediators and oxylipins in the context of obesity and diabetes-induced gut dysbiosis and inflammation.


Subject(s)
Diabetes Mellitus , Gastrointestinal Microbiome , Mice , Animals , Oxylipins , Transcriptome/genetics , Lipidomics , Obesity/metabolism , Inflammation/complications , Mice, Inbred Strains , Intestines
11.
Gut Microbes ; 15(1): 2178796, 2023.
Article in English | MEDLINE | ID: mdl-36803220

ABSTRACT

Consumption of prebiotics and plant-based compounds have many beneficial health effects through modulation of gut microbiota composition and are considered as promising nutritional strategy for the treatment of metabolic diseases. In the present study, we assessed the separated and combined effects of inulin and rhubarb on diet-induced metabolic disease in mice. We showed that supplementation with both inulin and rhubarb abolished the total body and fat mass gain upon high-fat and high-sucrose diet (HFHS) as well as several obesity-associated metabolic disorders. These effects were associated with increased energy expenditure, lower whitening of the brown adipose tissue, higher mitochondria activity and increased expression of lipolytic markers in white adipose tissue. Despite modifications of intestinal gut microbiota and bile acid compositions by inulin or rhubarb alone, combination of both inulin and rhubarb had minor additional impact on these parameters. However, the combination of inulin and rhubarb increased the expression of several antimicrobial peptides and higher goblet cell numbers, thereby suggesting a reinforcement of the gut barrier. Together, these results suggest that the combination of inulin and rhubarb in mice potentiates beneficial effects of separated rhubarb and inulin on HFHS-related metabolic disease and could be considered as nutritional strategy for the prevention and treatment of obesity and related pathologies.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Rheum , Animals , Mice , Adipose Tissue, Brown , Inulin/pharmacology , Inulin/metabolism , Rheum/metabolism , Sugars/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Prebiotics , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Adipose Tissue/metabolism
12.
Neuropharmacology ; 225: 109384, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36567005

ABSTRACT

While the impact of the gut microbiota on brain and behavior is increasingly recognized, human studies examining this question are still scarce. The primary objective of the current study was to explore the potential relationships between the gut microbiota composition, motor cortical excitability at rest and during inhibitory control, as well as behavioral inhibition, in healthy volunteers and in patients suffering from alcohol use disorder. Motor cortical excitability was examined using a range of transcranial magnetic stimulation (TMS) measures probed at rest, including the recruitment curve, short and long intracortical inhibition, and intracortical facilitation within the primary motor cortex. Moreover, TMS was applied during a choice reaction time task to assess changes in motor excitability associated with inhibitory control. Finally, behavioral inhibition was investigated using a neuropsychological task (anti-saccade). Overall, our results highlight several interesting correlations between microbial composition and brain measures. Hence, higher bacterial diversity, as well as higher relative abundances of UGC-002 and Christensenellaceae R-7 group were correlated with stronger changes in motor excitability associated with inhibitory control. Also, higher abundance of Anaerostipes was associated with higher level of corticospinal excitability. Finally, relative abundances of Bifidobacterium and Faecalibacterium were positively related to performance in the neuropsychological task, suggesting that they might have a positive impact on behavioral inhibition. Although correlation is not causation, the present study suggests that excitatory and inhibitory brain processes might be related to gut microbiota composition. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.


Subject(s)
Alcoholism , Gastrointestinal Microbiome , Humans , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Brain , Neural Inhibition/physiology
13.
Am J Physiol Endocrinol Metab ; 324(1): E85-E96, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36516223

ABSTRACT

Diet-induced obesity contributes to the development of type 2 diabetes, insulin resistance, metabolic inflammation, oxidative and endoplasmic reticulum (ER) stress. Overall, obesity is associated with deviations in the composition and functionality of the gut microbiota. There are many divergent findings regarding the link between the excessive intake of certain dietary components (i.e., fat and sugar) and obesity development. We therefore investigated the effect of specific diets, with a different content of sugar and fat, in promoting obesity and related comorbidities as well as their impact on microbial load and gut microbiota composition/diversity. C57BL/6J mice were fed either a low-sugar, low-fat control diet (CT), a high-sugar diet (HS), a high-fat, high-sugar diet (HF/HS), or a high-fat diet (HF) for 8 wk. The impact of the different diets on obesity, glucose metabolism, inflammation, and oxidative and ER stress was determined. Diet-induced changes in the gut microbiota composition and density were also analyzed. HF diet-fed mice showed the highest body weight and fat mass gains and displayed the most impaired glucose and insulin profiles. HS, HF/HS, and HF diets differently affected hepatic cholesterol content and mRNA expression of several markers associated with immune cells, inflammation, oxidative and ER stress in several organs/tissues. In addition, HF diet feeding resulted in a decreased microbial load at the end of the experiment. When analyzing the gut microbiota composition, we found that HS, HF/HS, and HF diets induced specific changes in the abundance of certain bacterial taxa. This was not associated with a specific change in systemic inflammatory markers, but HS mice exhibited higher FGF21 plasma levels compared with HF diet-fed mice. Taken together, our results highlight that dietary intake of different macronutrients distinctively impacts the development of an obese/diabetic state and the regulation of metabolic inflammation in specific organs. We propose that these differences are not only obesity-driven but that changes in the gut microbiota composition may play a key role in this context.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that dietary macronutrients (i.e., sugar and fat) have an impact on fecal bacterial cell counting and quantitative microbiome profiling in mice. Yet, we demonstrate that dietary fat is the determining factor to promote obesity and diabetes progression, and local inflammation in different body sites. These observations can help to disentangle the conundrum of the detrimental effects of fat and sugar in our dietary habits.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Mice , Animals , Sugars/pharmacology , Diabetes Mellitus, Type 2/complications , Mice, Inbred C57BL , Obesity/metabolism , Diet, High-Fat , Inflammation , Bacteria
14.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499011

ABSTRACT

Gut microbiota alterations are intimately linked to chronic constipation upon aging. We investigated the role of targeted changes in the gut microbiota composition in the relief of constipation symptoms after rhubarb extract (RE) supplementation in middle-aged volunteers. Subjects (95% women, average 58 years old) were randomized to three groups treated with RE at two different doses determined by its content of rhein (supplementation of 12.5 mg and 25 mg per day) vs. placebo (maltodextrin) for 30 days. We demonstrated that daily oral supplementation of RE for 30 days was safe even at the higher dose. Stool frequency and consistency, and perceived change in transit problem, transit speed and difficulty in evacuating, investigated by validated questionnaires, were improved in both groups of RE-treated volunteers compared to placebo. Higher abundance of Lachnospiraceae (mainly Roseburia and Agathobacter) only occurred after RE treatment when present at low levels at baseline, whereas an opposite shift in short-chain fatty acid (SCFA) levels was observed in both RE-treated groups (increase) and placebo (decrease). Fecal Lachnospiraceae and SCFA were positively correlated with stool consistency. This study demonstrates that RE supplementation promotes butyrate-producing bacteria and SCFA, an effect that could contribute to relieving chronic constipation in middle-aged persons.


Subject(s)
Gastrointestinal Microbiome , Rheum , Adult , Middle Aged , Humans , Female , Male , Constipation/microbiology , Fatty Acids, Volatile/pharmacology , Feces/microbiology , Clostridiales , Double-Blind Method
15.
Gut Microbes ; 14(1): 2152307, 2022.
Article in English | MEDLINE | ID: mdl-36448728

ABSTRACT

Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Mice , Animals , Prebiotics , Diet, High-Fat/adverse effects , Glycosylation , Obesity/prevention & control , Bacteroidetes , Mucus
16.
Am J Clin Nutr ; 116(4): 928-942, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36055959

ABSTRACT

BACKGROUND: The Mediterranean diet is associated with the prevention of diabetes, cardiovascular disease, and cancer, all of which are linked to intestinal barrier impairment. OBJECTIVES: Here, we hypothesize that the Mediterranean diet, possibly via the induction of short-chain fatty acids (SCFAs), improves intestinal barrier integrity. Furthermore, we aim to establish novel personalized nutrition advice based on machine learning algorithms. METHODS: We studied 260 women with intestinal barrier impairment. The women were allocated to follow either a Mediterranean diet or a control diet for 3 mo. Intestinal permeability was assessed by measuring lipopolysaccharide binding protein (LBP) in plasma and zonulin in feces. SCFA concentrations were analyzed in feces. Bi- and multivariate analyses and machine learning algorithms (random forest classification) were conducted. RESULTS: Particularly in the intervention group, adherence to the Mediterranean diet increased, whereas plasma LBP and fecal zonulin concentrations decreased (all q < 0.001 for the intervention group, all q < 0.1 for control group). In the intervention group, fecal SCFA concentrations increased (propionate + 19%; butyrate + 44%; both q < 0.001). Multivariate analyses showed that adherence to the Mediterranean diet was associated with SCFA concentrations (all q < 0.001) and inversely associated with LBP and zonulin concentrations (all q < 0.02). Mediation analyses identified propionate and butyrate as the key mechanistic link between diet and intestinal permeability integrity. Accordingly, using baseline SCFA data, we could predict the effect of the Mediterranean diet on intestinal permeability using a machine learning algorithm (receiver operating characteristic AUC: 0.78-0.96). CONCLUSIONS: Our data suggest that SCFAs are key mediators for the relation between diet and gut health. Assessment of SCFAs may form a basis for personalized nutrition in future clinical care. These results need to be verified in larger studies powered for this purpose, comprising different study populations. The trial was registered at clinicaltrials.gov as NCT02087592 and NCT02516540.


Subject(s)
Diet, Mediterranean , Butyrates , Fatty Acids, Volatile/analysis , Feces/chemistry , Female , Humans , Lipopolysaccharides , Propionates
17.
Cells ; 11(17)2022 08 27.
Article in English | MEDLINE | ID: mdl-36078075

ABSTRACT

Anastomotic leakage is a major complication following colorectal surgery leading to peritonitis, complications, and mortality. Akkermansia muciniphila has shown beneficial effects on the gut barrier function. Whether A. muciniphila reduces peritonitis and mortality during colonic leakage is unknown. Whether A. muciniphila can directly modulate the expression of genes in the colonic mucosa in humans has never been studied. We investigated the effects of a pretreatment (14 days) with live A. muciniphila prior to surgical colonic perforation on peritonitis, mortality, and wound healing. We used mice with an inducible intestinal-epithelial-cell-specific deletion of MyD88 (IEC-MyD88 KO) to investigate the role of the innate immune system in this context. In a proof-of-concept pilot study, healthy humans were exposed to A. muciniphila for 2 h and colonic biopsies taken before and after colonic instillation for transcriptomic analysis. Seven days after colonic perforation, A.-muciniphila-treated mice had significantly lower mortality and severity of peritonitis. This effect was associated with significant improvements of wound histological healing scores, higher production of IL22, but no changes in the mucus layer thickness or genes involved in cell renewal, proliferation, or differentiation. All these effects were abolished in IEC-MyD88 KO mice. Finally, human subjects exposed to A. muciniphila exhibited an increased level of the bacterium at the mucus level 2 h after instillation and significant changes in the expression of different genes involved in the regulation of cell cycling, gene transcription, immunity, and inflammation in their colonic mucosa. A. muciniphila improves wound healing during transmural colonic wall defect through mechanisms possibly involving IL22 signaling and requiring MyD88 in the intestinal cells. In healthy humans, colonic administration of A. muciniphila is well tolerated and changes the expression of genes involved in the immune pathways.


Subject(s)
Akkermansia , Myeloid Differentiation Factor 88 , Peritonitis , Wound Healing , Animals , Colon/microbiology , Colon/pathology , Humans , Mice , Myeloid Differentiation Factor 88/metabolism , Peritonitis/metabolism , Peritonitis/therapy , Pilot Projects , Verrucomicrobia/metabolism , Wound Healing/genetics , Wound Healing/physiology
18.
EBioMedicine ; 80: 104051, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35561452

ABSTRACT

BACKGROUND: Current data suggest that dietary fibre (DF) interaction with the gut microbiota largely contributes to their physiological effects. The bacterial fermentation of DF leads to the production of metabolites, most of them are volatile. This study analyzed the breath volatile metabolites (BVM) profile in healthy individuals (n=15) prior and after a 3-week intervention with chitin-glucan (CG, 4.5 g/day), an insoluble fermentable DF. METHODS: The present exploratory study presents the original data related to the secondary outcomes, notably the analysis of BVM. BVM were analyzed throughout the test days -in fasting state and after standardized meals - using selected ion flow tube mass spectrometry (SIFT-MS). BVM production was correlated to the gut microbiota composition (Illumina sequencing, primary outcome), analyzed before and after the intervention. FINDINGS: The data reveal that the post-prandial state versus fasting state is a key determinant of BVM fingerprint. Correlation analyses with fecal microbiota spotlighted butyrate-producing bacteria, notably Faecalibacterium, as dominant bacteria involved in butyrate and other BVM expiration. CG intervention promotes interindividual variations of fasting BVM, and decreases or delays the expiration of most exhaled BVM in favor of H2 expiration, without any consequence on gastrointestinal tolerance. INTERPRETATION: Assessing BVM is a non-invasive methodology allowing to analyze the influence of DF intervention on the gut microbiota. FUNDING: FiberTAG project was initiated from a European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL) and was supported by the Service Public de Wallonie (SPW-EER, convention 1610365, Belgium).


Subject(s)
Gastrointestinal Microbiome , Bacteria/metabolism , Butyrates/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Feces/microbiology , Healthy Volunteers , Humans , Metabolome
19.
Microbiome ; 10(1): 77, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562794

ABSTRACT

BACKGROUND: Dietary fiber is an integral part of a healthy diet, but questions remain about the mechanisms that underlie effects and the causal contributions of the gut microbiota. Here, we performed a 6-week exploratory trial in adults with excess weight (BMI: 25-35 kg/m2) to compare the effects of a high-dose (females: 25 g/day; males: 35 g/day) supplement of fermentable corn bran arabinoxylan (AX; n = 15) with that of microbiota-non-accessible microcrystalline cellulose (MCC; n = 16). Obesity-related surrogate endpoints and biomarkers of host-microbiome interactions implicated in the pathophysiology of obesity (trimethylamine N-oxide, gut hormones, cytokines, and measures of intestinal barrier integrity) were assessed. We then determined whether clinical outcomes could be predicted by fecal microbiota features or mechanistic biomarkers. RESULTS: AX enhanced satiety after a meal and decreased homeostatic model assessment of insulin resistance (HOMA-IR), while MCC reduced tumor necrosis factor-α and fecal calprotectin. Machine learning models determined that effects on satiety could be predicted by fecal bacterial taxa that utilized AX, as identified by bioorthogonal non-canonical amino acid tagging. Reductions in HOMA-IR and calprotectin were associated with shifts in fecal bile acids, but correlations were negative, suggesting that the benefits of fiber may not be mediated by their effects on bile acid pools. Biomarkers of host-microbiome interactions often linked to bacterial metabolites derived from fiber fermentation (short-chain fatty acids) were not affected by AX supplementation when compared to non-accessible MCC. CONCLUSION: This study demonstrates the efficacy of purified dietary fibers when used as supplements and suggests that satietogenic effects of AX may be linked to bacterial taxa that ferment the fiber or utilize breakdown products. Other effects are likely microbiome independent. The findings provide a basis for fiber-type specific therapeutic applications and their personalization. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02322112 , registered on July 3, 2015. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Adult , Bacteria , Bile Acids and Salts/analysis , Biomarkers/analysis , Dietary Fiber , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Leukocyte L1 Antigen Complex/analysis , Leukocyte L1 Antigen Complex/pharmacology , Male , Obesity/microbiology
20.
EBioMedicine ; 80: 104033, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35490461

ABSTRACT

BACKGROUND: Emerging evidence highlights that targeting the gut microbiota could be an interesting approach to improve alcohol liver disease due to its important plasticity. This study aimed to evaluate the effects of inulin supplementation on liver parameters in alcohol use disorder (AUD) patients (whole sample) and in a subpopulation with early alcohol-associated liver disease (eALD). METHODS: Fifty AUD patients, hospitalized for a 3-week detoxification program, were enrolled in a randomized, double-blind, placebo-controlled study and assigned to prebiotic (inulin) versus placebo for 17 days. Liver damage, microbial translocation, inflammatory markers and 16S rDNA sequencing were measured at the beginning (T1) and at the end of the study (T2). FINDINGS: Compared to placebo, AST (ß = 8.55, 95% CI [2.33:14.77]), ALT (ß = 6.01, 95% CI [2.02:10.00]) and IL-18 (ß = 113.86, 95% CI [23.02:204.71]) were statistically significantly higher in the inulin group in the whole sample at T2. In the eALD subgroup, inulin supplementation leads to specific changes in the gut microbiota, including an increase in Bifidobacterium and a decrease of Bacteroides. Despite those changes, AST (ß = 14.63, 95% CI [0.91:28.35]) and ALT (ß = 10.40, 95% CI [1.93:18.88]) at T2 were higher in the inulin group compared to placebo. Treatment was well tolerated without important adverse events or side effects. INTERPRETATION: This pilot study shows that 17 days of inulin supplementation versus placebo, even though it induces specific changes in the gut microbiota, did not alleviate liver damage in AUD patients. Further studies with a larger sample size and duration of supplementation with adequate monitoring of liver parameters are needed to confirm these results. Gut2Brain study: https://clinicaltrials.gov/ct2/show/NCT03803709 FUNDING: Fédération Wallonie-Bruxelles, FRS-FNRS, Fondation Saint-Luc.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Alcoholism/complications , Alcoholism/drug therapy , Double-Blind Method , Feces/microbiology , Humans , Inulin/therapeutic use , Liver , Pilot Projects , Prebiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...