Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(2): e10875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38352199

ABSTRACT

White-tailed deer (Odocoileus virginianus) are generally considered a home-ranging species, although northern populations may migrate between summer and winter ranges to balance resource requirements with environmental stressors. We evaluated annual home range characteristics of adult bucks (n = 30) fitted with GPS collars from 2017 to 2021 in central Mississippi with time series segmentation and Kernel Density Estimation (KDE) to determine if individuals employed varying movement strategies. We found 67% of bucks displayed a "sedentary" strategy characterized by a single KDE home range polygon with a mean size of 361 ha. The remaining 33% of bucks employed a "mobile" strategy characterized by multiple home range segments with a mean size of 6530 ha. Sedentary bucks went on an average of 5.9 excursions annually while mobile bucks went on 0.8. Excursion timing for both strategies peaked in breeding season and early spring. Mobile buck home ranges were separated by a mean distance of 7.1 km and mean duration in one home range segment before traveling to another was 78 days. Our study provides the first evidence that partial migration may apply to a larger proportion of lower-latitude deer populations than originally thought, though the environmental justification for this partial migration is not clear.

2.
J Wildl Dis ; 58(2): 384-388, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35090029

ABSTRACT

Aflatoxins, common contaminants of crops and feed, are a health risk to wild and domestic animals. Past research found aflatoxins in feed and feeders provided for wild herbivores valued for recreational hunting (hereafter: game) species but are consumed by various species. We determined the current extent of aflatoxin contamination in wildlife feed and white-tailed deer (Odocoileus virginianus) feeders, examined aflatoxin production in corn piles over time, and quantified nontarget wildlife visitation to deer feeders. We sampled feeders (n=107) in Mississippi, US, bagged/bulk feed sources (n=64) in the southeastern US, as well as corn piles exposed to environmental contamination over 10 d (n=20) during May-January of 2019 and 2020. We found aflatoxins (≥5 parts per billion [ppb]) in feeders during summer (4% prevalence, 58±71 ppb mean±SD) and hunting season (October-January, 6%, 60±1 ppb) and in bagged/bulk feed during hunting season (11%, 13±8 ppb). After 8 d, aflatoxins were detected in all summer corn piles at toxic levels (483-3,475 ppb), although none were detected in hunting season piles after day one. Nontarget wildlife identified at feeders included 16 mammalian and 18 avian species. Numerous wildlife species are at risk for aflatoxin exposure due to supplemental feeding of deer, with the primary risk factor in the southeastern US being summertime environmental exposure of feed to aflatoxin-producing fungi.


Subject(s)
Aflatoxins , Deer , Aflatoxins/analysis , Aflatoxins/toxicity , Animal Feed/analysis , Animals , Animals, Wild , Food Contamination , Zea mays/microbiology
3.
Behav Processes ; 179: 104196, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32710993

ABSTRACT

Herbivores must navigate a heterogeneous matrix of nutrients in plant communities to meet physiological requirements. Given that the only difference between an essential nutrient and a toxin is the concentration in the herbivores diet, heterogeneity of nutrient concentrations in plant communities likely force wild herbivores to balance intake of abundant nutrients that may reach toxic levels with the need to meet nutritional demands of rare nutrients (i.e., nutrient balance hypothesis). While this hypothesis has been demonstrated in controlled studies with captive herbivores, experiments testing the nutrient balance hypothesis with wild herbivores are rare. We designed a cafeteria-style experiment to measure use of forages with differing nutritional compositions by wild white-tailed deer (Odocoileus virginianus) to test the nutrient balance hypothesis. We predicted deer diet selection would be explained by attraction to some nutrients and avoidance of others. Deer selected forages with low sulfur concentrations, a nutrient that commonly reaches toxic levels in herbivores. However, deer secondarily selected forages with greater digestibility and crude protein. Thus, our data indicate that the nutrient balance hypothesis may explain diet selection in wild herbivores where they avoid reaching toxicity of abundant nutrients while secondarily maximizing intake of limiting nutrients.


Subject(s)
Deer , Feeding Behavior/physiology , Animals , Diet , Herbivory , Nutrients , Plants
4.
Ecol Evol ; 10(5): 2579-2587, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32185003

ABSTRACT

Climate change is expected to create novel environments in which extant species cannot persist, therefore leading to the loss of them and their associated ecological functions within the ecosystem. However, animals may employ behavioral mechanisms in response to warming that could allow them to maintain their functional roles in an ecosystem despite changed temperatures. Specifically, animals may shift their activity in space or time to make use of thermal heterogeneity on the landscape. However, few studies consider the role of behavioral plasticity and spatial or temporal heterogeneity in mitigating the effects of climate change. We conducted experiments to evaluate the potential importance of behavior in mediating the net effects of warming on white-tailed deer (Odocoileus virginianus). We used shade structures to manipulate the thermal environment around feeding stations to monitor deer feeding activity and measure total consumption. In individual experiments where deer only had access to unshaded feeders, deer fed less during the day but compensated by increasing feeding during times when temperature was lower. In group experiments where deer had access to both shaded and unshaded feeders, deer often fed during the day but disproportionally preferred the cooler, shaded feeders. Our results suggest that deer can capitalize on temporal and spatial heterogeneity in the thermal environment to meet nutritional and thermal requirements, demonstrating the importance of behavioral plasticity when predicting the net effects of climate change.

5.
Int J Biometeorol ; 64(4): 611-621, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31900588

ABSTRACT

Research in northern latitudes confirms that climate teleconnections exert important influences on ungulate fitness, but studies from regions with milder climates are lacking. We explored the influence of the Pacific Decadal Oscillation (PDO), Northern Atlantic Oscillation (NAO), and El Niño-Southern Oscillation (ENSO) on male, 2.5-year-old white-tailed deer (Odocoileus virginianus) antler and body mass in Mississippi, USA, a region with mild winters and warm, humid summers. Explanatory variables were seasonal averages of each climate index extending back to 3 years prior to account for possible maternal and lag effects. Seasonal climate indices from the period of gestation and the first year of life were correlated with deer morphometrics. Reduced antler mass was largely correlated (R2 = 0.52) with PDO values indicating dry conditions during parturition and neonatal development and NAO values indicating warmer than normal winters during gestation and the first year of life. Body mass was less correlated (R2 = 0.16) to climate indices, responding negatively to warmer winter weather during the first winter of life. Climate may promote variable fitness among cohorts through long-term effects on male competition for dominance and breeding access. Because broad-scale climate indices simplify complex weather systems, they may benefit management at larger scales. Although this study compared climate with morphological variables, it is likely that demographic characteristics can likewise be modeled using climate indices. As climate change in this region is projected to include greater variability in summer precipitation, we may see concomitantly greater variability in fitness among cohorts of white-tailed deer.


Subject(s)
Antlers , Deer , Animals , Climate Change , El Nino-Southern Oscillation , Male , Seasons , Weather
6.
Oecologia ; 186(1): 117-128, 2018 01.
Article in English | MEDLINE | ID: mdl-29164369

ABSTRACT

Maternal and early-life influences may affect life-long individual phenotype, potentially influencing reproductive success. However, some individuals may compensate for a poor start to life, which may improve longevity and reproductive success later in life. We developed four models to assess whether maternal characteristics (age, body mass and previous year cumulative lactation demand) and/or birth date influenced a long-lived mammal's phenotype to maturity. We used a directional separation analysis to assess the relative influence of each maternal characteristic and birth date on captive male white-tailed deer (Odocoileus virginianus) body mass and antler size. We found that birth date was the only characteristic that persistently influenced male body mass. Depending on when offspring were born, they used alternative tactics to increase their body mass. Birth date positively influenced body mass at 1, 2 and 3 years of age-indicating males displayed faster growth and compensated for late birth (hare tactic). However, early-, heavy-born males were heavy juveniles, and juvenile body mass positively influenced mature body mass (slow but steady growth; tortoise tactic). Our findings provide a first evidence that a long-lived ungulate can display alternative tactics to achieve heavy body mass; individuals are either born early and heavy and are heavy throughout life (tortoise), or light, late-born individuals compensate for a poor start in life by growing at a faster rate to equal or surpass the body mass of early-born individuals (hare). Either tactic may be viable if it influences reproductive success as body mass positively influences access to mates in ungulates.


Subject(s)
Deer , Hares , Turtles , Animals , Female , Lactation , Male , Reproduction
7.
J Vis Exp ; (126)2017 08 08.
Article in English | MEDLINE | ID: mdl-28809837

ABSTRACT

Cervid phenotype can be placed into one of two categories: efficiency, which promotes survival over extravagant morphometric growth, and luxury, which promotes growth of large weaponry and body size. Populations of the same species display each phenotype depending on environmental conditions. Although antler and body size of male white-tailed deer (Odocoileus virginianus) varies by physiographic region in Mississippi, USA and is strongly correlated with regional variation in nutritional quality, the effects of population-level genetics from native stocks and previous re-stocking efforts cannot be disregarded. This protocol describes how we designed a controlled study, where other factors that influence phenotype, such as age and nutrition, are controlled. We brought wild-caught pregnant females and six-month-old fawns from three distinct physiographic regions in Mississippi, USA to the Mississippi State University Rusty Dawkins Memorial Deer Unit. Deer from the same region were bred to produce a second generation of offspring, allowing us to assess generational responses and maternal effects. All deer ate the same high-quality (20% crude protein deer pellet) diet ad libitum. We uniquely marked each neonate and recorded body mass, hind foot, and total body length. Each subsequent fall, we sedated individuals via remote injection and sampled the same morphometrics plus antlers of adults. We found that all morphometrics increased in size from first to second generation, with full compensation of antler size (regional variation no longer present) and partial compensation of body mass (some evidence of regional variation) evident in the second generation. Second generation males that originated from our poorest quality soil region displayed about a 40% increase in antler size and about a 25% increase in body mass when compared to their wild harvested counterparts. Our results suggest phenotypic variation of wild male white-tailed deer in Mississippi are more related to differences in nutritional quality than population-level genetics.


Subject(s)
Antlers/growth & development , Deer/growth & development , Deer/genetics , Animal Nutritional Physiological Phenomena , Animals , Antlers/anatomy & histology , Body Size/genetics , Diet , Ecosystem , Female , Male , Mississippi , Phenotype , Soil , Telemetry/instrumentation , Telemetry/methods
8.
Ecol Evol ; 6(20): 7276-7285, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27942376

ABSTRACT

Cervid phenotype can be categorized as efficiency, which promotes survival but not extravagant growth, or luxury which promotes growth of large weaponry and body size. Although nutritional variation greatly influences these phenotypic forms, the potential for subspecies-linked genetic or founder effects from restocking efforts of harvested species has not been eliminated. We measured intergenerational phenotypic change of males in response to improved nutrition in three captive-reared populations of white-tailed deer. Study animals were offspring of females captured from three regions displaying variation in antler and body size as well as nutritional variation. We fed all animals a high-quality diet and measured antler and body size for two generations. We predicted that improved long-term nutrition would cue a switch from efficiency to luxury phenotype for all populations and that regional compensation of antler and body size would occur. Improved nutrition positively influenced all measures of antler and body size; however, changes varied in magnitude. Antler size was more responsive than body size. Improved nutrition also facilitated regional compensation of antler size and partial compensation of body size. Our results show that improved long-term nutrition cues a shift from efficiency to luxury phenotype in a long-lived cervid with weaponry being more responsive than body size. Compensation of antler size suggests that weaponry is greatly influenced by nutrition and is not restricted by subspecies-linked genetic or founder effects from restocking efforts related to our regional populations. Therefore, strategies to improve cervid antler and body size should include habitat management that elevates long-term diet quality.

9.
J Zoo Wildl Med ; 47(2): 636-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27468041

ABSTRACT

During the 2008-2011 time period, undiagnosed lesions were observed in 21 of 150 white-tailed deer fawns (Odocoileus virginianus) that were part of a captive deer herd at Mississippi State University. Clinical findings in healthy and diseased fawns from 0 to 90 days of age included bite and scratch marks followed by moderate to severe ear and tail necrosis. Gross necropsy findings of necrotizing ulcerative dermatitis correlated with histopathologic findings that included focally severe multifocal vasculitis, vascular necrosis, and thrombosis. This article is a clinical description of these previously unreported lesions associated with tissue necrosis in young captive white-tailed deer.


Subject(s)
Deer , Dermatitis/pathology , Dermatitis/veterinary , Ear/pathology , Tail/pathology , Animals , Female , Male , Necrosis/pathology , Necrosis/veterinary , Thrombosis/pathology , Thrombosis/veterinary , Vasculitis/pathology , Vasculitis/veterinary
10.
PLoS One ; 10(8): e0136034, 2015.
Article in English | MEDLINE | ID: mdl-26288141

ABSTRACT

Maternal care influences offspring quality and can improve a mother's inclusive fitness. However, improved fitness may only occur when offspring quality (i.e., offspring birth mass) persists throughout life and enhances survival and/or reproductive success. Although maternal body mass, age, and social rank have been shown to influence offspring birth mass, the inter-dependence among these variables makes identifying causation problematic. We established that fawn birth mass was related to adult body mass for captive male and female white-tailed deer (Odocoileus virginianus), thus maternal care should improve offspring fitness. We then used path analysis to identify which maternal characteristic(s) most influenced fawn birth mass of captive female white-tailed deer. Maternal age, body mass and social rank had varying effects on fawn birth mass. Maternal body mass displayed the strongest direct effect on fawn birth mass, followed by maternal age and social rank. Maternal body mass had a greater effect on social rank than age. The direct path between social rank and fawn birth mass may indicate dominance as an underlying mechanism. Our results suggest that heavier mothers could use dominance to improve access to resources, resulting in increased fitness through production of heavier offspring.


Subject(s)
Biobehavioral Sciences , Birth Weight/physiology , Maternal Behavior/psychology , Animals , Animals, Newborn , Body Mass Index , Deer , Female , Hierarchy, Social , Male , Maternal Age
11.
Mol Ecol ; 12(12): 3237-52, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14629342

ABSTRACT

White-tailed deer (Odocoileus virginianus) were nearly extirpated from the southeastern USA during the late 19th and early 20th centuries. Recovery programmes, including protection of remnant native stocks and transplants from other parts of the species' range, were initiated in the early 1900's. The recovery programmes were highly successful and deer are presently numerous and continuously distributed throughout the southeastern USA. However, the impact of the recovery programmes on the present genetic structure of white-tailed deer remains to be thoroughly investigated. We used 17 microsatellite DNA loci to assess genetic differentiation and diversity for 543 white-tailed deer representing 16 populations in Mississippi and three extra-state reference populations. There was significant genetic differentiation among all populations and the majority of genetic variation (> or = 93%) was contained within populations. Patterns of genetic structure, genetic similarity and isolation by distance within Mississippi were not concordant with geographical proximity of populations or subspecies delineations. We detected evidence of past genetic bottlenecks in nine of the 19 populations examined. However, despite experiencing genetic bottlenecks or founder events, allelic diversity and heterozygosity were uniformly high in all populations. These exceeded reported values for other cervid species that experienced similar population declines within the past century. The recovery programme was successful in that deer were restored to their former range while maintaining high and uniform genetic variability. Our results seem to confirm the importance of rapid population expansion and habitat continuity in retaining genetic variation in restored populations. However, the use of diverse transplant stocks and the varied demographic histories of populations resulted in fine-scale genetic structuring.


Subject(s)
Conservation of Natural Resources , Deer/genetics , Genetic Variation , Genetics, Population , Analysis of Variance , Animals , Cluster Analysis , Founder Effect , Gene Frequency , Geography , Microsatellite Repeats/genetics , Mississippi , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...