Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacol Rep ; 41(2): 207-214, 2021 06.
Article in English | MEDLINE | ID: mdl-33955711

ABSTRACT

AIM: Attention is a goal-directed cognitive process that facilitates the detection of task-relevant sensory stimuli from dynamic environments. Anterior cingulate cortical area (ACA) is known to play a key role in attentional behavior, but the specific circuits mediating attention remain largely unknown. As ACA modulates sensory processing in the visual cortex (VIS), we aim to test a hypothesis that frontal top-down neurons projecting from ACA to VIS (ACAVIS ) contributes to visual attention behavior through chemogenetic approach. METHODS: Adult, male mice were trained to perform the 5-choice serial reaction time task (5CSRTT) using a touchscreen system. An intersectional viral approach was used to selectively express inhibitory designer receptors exclusively activated by designer drugs (iDREADD) or a static fluorophore (mCherry) in ACAVIS neurons. Mice received counterbalanced injections (i.p.) of the iDREADD ligand (clozapine-N-oxide; CNO) or vehicle (saline) prior to 5CSRTT testing. Finally, mice underwent progressive ratio testing and open field testing following CNO or saline administration. RESULTS: Chemogenetic suppression of ACAVIS neuron activity decreased correct task performance during the 5CSRTT mainly driven by an increase in omission and a trending decrease in accuracy with no change in behavioral outcomes associated with motivation, impulsivity, or compulsivity. Breakpoint during the progressive ratio task and distance moved in the open field test were unaffected by ACAVIS neuron suppression. CNO administration itself had no effect on task performance in mCherry-expressing mice. CONCLUSION: These results identify long-range frontal-sensory ACAVIS projection neurons as a key enactor of top-down attentional behavior and may serve as a beneficial therapeutic target.


Subject(s)
Gyrus Cinguli , Visual Cortex , Animals , Male , Mice , Neurons , Reaction Time
2.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33674307

ABSTRACT

Cognitive function depends on frontal cortex development; however, the mechanisms driving this process are poorly understood. Here, we identify that dynamic regulation of the nicotinic cholinergic system is a key driver of attentional circuit maturation associated with top-down frontal neurons projecting to visual cortex. The top-down neurons receive robust cholinergic inputs, but their nicotinic tone decreases following adolescence by increasing expression of a nicotinic brake, Lynx1 Lynx1 shifts a balance between local and long-range inputs onto top-down frontal neurons following adolescence and promotes the establishment of attentional behavior in adulthood. This key maturational process is disrupted in a mouse model of fragile X syndrome but was rescued by a suppression of nicotinic tone through the introduction of Lynx1 in top-down projections. Nicotinic signaling may serve as a target to rebalance local/long-range balance and treat cognitive deficits in neurodevelopmental disorders.


Subject(s)
Nicotine , Visual Cortex , Animals , Attention/physiology , Cholinergic Agents , Mice , Neurons/physiology , Visual Cortex/physiology
3.
Neuron ; 109(7): 1202-1213.e5, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33609483

ABSTRACT

The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACAVIS neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACAVIS neurons in anticipation of visual stimuli is crucial for adjusting performance following errors. 30-Hz optogenetic stimulation of ACAVIS neurons in anesthetized mice recapitulates the increased gamma and reduced theta VIS oscillatory changes that are associated with endogenous post-error performance during behavior and subsequently increased visually evoked spiking, a hallmark feature of visual attention. This frontal sensory neural circuit links error monitoring with implementing adjustments of attention to guide behavioral adaptation, pointing to a circuit-based mechanism for promoting cognitive control.


Subject(s)
Attention/physiology , Frontal Lobe/physiology , Recruitment, Neurophysiological/physiology , Animals , Behavior, Animal , Electroencephalography , Electrophysiological Phenomena , Male , Mice , Mice, Inbred C57BL , Motor Activity/physiology , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Photic Stimulation , Psychomotor Performance/physiology , Reaction Time/physiology , Somatosensory Cortex/physiology , Visual Cortex/physiology
4.
Nat Commun ; 11(1): 3983, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770078

ABSTRACT

Frontal top-down cortical neurons projecting to sensory cortical regions are well-positioned to integrate long-range inputs with local circuitry in frontal cortex to implement top-down attentional control of sensory regions. How adolescence contributes to the maturation of top-down neurons and associated local/long-range input balance, and the establishment of attentional control is poorly understood. Here we combine projection-specific electrophysiological and rabies-mediated input mapping in mice to uncover adolescence as a developmental stage when frontal top-down neurons projecting from the anterior cingulate to visual cortex are highly functionally integrated into local excitatory circuitry and have heightened activity compared to adulthood. Chemogenetic suppression of top-down neuron activity selectively during adolescence, but not later periods, produces long-lasting visual attentional behavior deficits, and results in excessive loss of local excitatory inputs in adulthood. Our study reveals an adolescent sensitive period when top-down neurons integrate local circuits with long-range connectivity to produce attentional behavior.


Subject(s)
Aging/physiology , Attention/physiology , Behavior, Animal/physiology , Neurons/physiology , Action Potentials/physiology , Animals , Channelrhodopsins/metabolism , Gyrus Cinguli/physiology , Male , Mice, Inbred C57BL , Models, Neurological , Neural Inhibition/physiology , Presynaptic Terminals/physiology , Rabies/physiopathology , Synapses/physiology , Vision, Ocular/physiology
5.
J Neurosci ; 40(27): 5214-5227, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32467358

ABSTRACT

The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , GPI-Linked Proteins/physiology , Interneurons/physiology , Neuronal Plasticity/physiology , Somatostatin/physiology , Visual Cortex/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Dominance, Ocular/genetics , Evoked Potentials, Visual/genetics , Evoked Potentials, Visual/physiology , Female , GPI-Linked Proteins/genetics , Immunohistochemistry , Male , Mice , Mice, Knockout , Mice, Transgenic , Neuronal Plasticity/genetics , Phosphatidylinositols/pharmacology , Receptors, Nicotinic/genetics , Recovery of Function/genetics , Vision, Monocular/genetics , Vision, Monocular/physiology , Visual Acuity/genetics
6.
Neuropsychopharmacology ; 41(4): 1014-23, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26224620

ABSTRACT

Attention is disrupted commonly in psychiatric disorders, yet mechanistic insight remains limited. Deficits in this function are associated with dorsal anterior cingulate cortex (dACC) excitotoxic lesions and pharmacological disinhibition; however, a causal relationship has not been established at the cellular level. Moreover, this association has not yet been examined in a genetically tractable species such as mice. Here, we reveal that dACC neurons causally contribute to attention processing by combining a chemogenetic approach that reversibly suppresses neural activity with a translational, touchscreen-based attention task in mice. We virally expressed inhibitory hM4Di DREADD (designer receptor exclusively activated by a designer drug) in dACC neurons, and examined the effects of this inhibitory action with the attention-based five-choice serial reaction time task. DREADD inactivation of the dACC neurons during the task significantly increased omission and correct response latencies, indicating that the neuronal activities of dACC contribute to attention and processing speed. Selective inactivation of excitatory neurons in the dACC not only increased omission, but also decreased accuracy. The effect of inactivating dACC neurons was selective to attention as response control, motivation, and locomotion remain normal. This finding suggests that dACC excitatory neurons play a principal role in modulating attention to task-relevant stimuli. This study establishes a foundation to chemogenetically dissect specific cell-type and circuit mechanisms underlying attentional behaviors in a genetically tractable species.


Subject(s)
Attention/physiology , Gyrus Cinguli/physiology , Neurons/physiology , Receptor, Muscarinic M4/physiology , Animals , Attention/drug effects , Clozapine/administration & dosage , Clozapine/analogs & derivatives , GABA Antagonists/administration & dosage , Genetic Vectors , Gyrus Cinguli/drug effects , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Pentylenetetrazole/administration & dosage , Reaction Time , Receptor, Muscarinic M4/genetics , Receptor, Muscarinic M4/metabolism
7.
J Neurosci ; 35(37): 12693-702, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377459

ABSTRACT

Experience-dependent cortical plasticity declines with age. At the molecular level, experience-dependent proteolytic activity of tissue plasminogen activator (tPA) becomes restricted in the adult brain if mice are raised in standard cages. Understanding the mechanism for the loss of permissive proteolytic activity is therefore a key link for improving function in adult brains. Using the mouse primary visual cortex (V1) as a model, we demonstrate that tPA activity in V1 can be unmasked following 4 d of monocular deprivation when the mice older than 2 months are raised in standard cages by the genetic removal of Lynx1, a negative regulator of adult plasticity. This was also associated with the reduction of stubby and thin spine density and enhancement of ocular dominance shift in adult V1 of Lynx1 knock-out (KO) mice. These structural and functional changes were tPA-dependent because genetic removal of tPA in Lynx1 KO mice can block the monocular deprivation-dependent reduction of dendritic spine density, whereas both genetic and adult specific inhibition of tPA activity can ablate the ocular dominance shift in Lynx1 KO mice. Our work demonstrates that the adult brain has an intrinsic potential for experience-dependent elevation of proteolytic activity to express juvenile-like structural and functional changes but is effectively limited by Lynx1 if mice are raised in standard cages. Insights into the Lynx1-tPA plasticity mechanism may provide novel therapeutic targets for adult brain disorders. SIGNIFICANCE STATEMENT: Experience-dependent proteolytic activity of tissue plasminogen activator (tPA) becomes restricted in the adult brain in correlation with the decline in cortical plasticity when mice are raised in standard cages. We demonstrated that removal of Lynx1, one of negative regulators of plasticity, unmasks experience-dependent tPA elevation in visual cortex of adult mice reared in standard cages. This proteolytic elevation facilitated dendritic spine reduction and ocular dominance plasticity in adult visual cortex. This is the first demonstration of adult brain to retain the intrinsic capacity to elevate tPA in an experience-dependent manner but is effectively limited by Lynx1. tPA-Lynx1 may potentially be a new candidate mechanism for interventions that were shown to activate plasticity in adult brain.


Subject(s)
Environment , Membrane Glycoproteins/physiology , Nerve Tissue Proteins/physiology , Neuronal Plasticity/physiology , Neuropeptides/physiology , Tissue Plasminogen Activator/physiology , Visual Cortex/physiopathology , Action Potentials , Adaptor Proteins, Signal Transducing , Aging/physiology , Animals , Blindness/physiopathology , Dendritic Spines/ultrastructure , Dominance, Ocular , Female , Genes, Reporter , Housing, Animal , Male , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptides/deficiency , Neuropeptides/genetics , Sensory Deprivation/physiology
8.
Mol Brain ; 7: 75, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25359633

ABSTRACT

BACKGROUND: Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS: We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS: This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.


Subject(s)
GABAergic Neurons/metabolism , Parvalbumins/metabolism , Receptors, Nicotinic/metabolism , Somatostatin/metabolism , Visual Cortex/metabolism , Adaptor Proteins, Signal Transducing , Animals , GPI-Linked Proteins , Glutamic Acid/metabolism , Interneurons , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Receptors, Serotonin, 5-HT3/metabolism
9.
Neurobiol Aging ; 34(10): 2431-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23683827

ABSTRACT

Neurogenesis is thought to play a role in cognitive function and hippocampal plasticity. Previous studies suggest that neurogenesis declines with aging. However, the onset and mechanism of declined neurogenesis are not fully elucidated. Here we show that the major decline in neurogenesis takes place during adulthood, before aging. Decline in neurogenesis takes place in the subgranular layer of the dentate gyrus and in the subventricular zone, and is primarily due to a reduced number of fast-proliferating neural progenitor cells. Importantly, this decline can be rescued by intraventricular injection of recombinant soluble amyloid precursor protein (sAPPα), which regulates neural progenitor cell proliferation in the adult brain. The counterpart, sAPPß, a product of the amyloidogenic cleavage pathway of amyloid precursor protein, fails to exhibit a proliferative effect in vitro and in vivo, in equimolar concentrations to sAPPα. These observations suggest that adulthood is an appropriate time window for an intervention that upregulates neurogenesis, such as enhancement of sAPPα levels, for the prevention of declining brain plasticity and cognitive function.


Subject(s)
Aging/pathology , Aging/physiology , Amyloid beta-Protein Precursor/pharmacology , Cell Proliferation/drug effects , Neurogenesis/drug effects , Neurons/cytology , Stem Cells/cytology , Amyloid beta-Protein Precursor/administration & dosage , Amyloid beta-Protein Precursor/physiology , Animals , Cells, Cultured , Cerebral Ventricles/cytology , Cerebral Ventricles/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Cognition Disorders/prevention & control , Dentate Gyrus/cytology , Dentate Gyrus/pathology , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Neurogenesis/physiology , Neuronal Plasticity , Neurons/pathology , Recombinant Proteins , Solubility , Stem Cells/pathology
10.
J Neurochem ; 123(4): 459-66, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22897173

ABSTRACT

In a previous study, we reported that microRNA (miRNA) precursors are expressed in synaptic fractions within adult mouse forebrain, where they are enriched at post-synaptic densities (PSDs). However, because that study employed qRT-PCR primers that recognize the hairpin region, it was not able to distinguish between primary microRNA gene transcripts (pri-miRs) and small hairpin precursors (pre-miRs). Here, using primer sets that selectively measure regions upstream, downstream and flanking the hairpin, we demonstrate that pri-miRs are present in synaptic fractions (enriched several-fold relative to total tissue homogenate) and are especially enriched in isolated PSDs. Drosha and DGCR8 proteins are also expressed in synaptic fractions and PSDs, and are tightly associated with pri-miRs as assessed by coimmunoprecipitation under stringent conditions. Pri-miRs, drosha, and DGCR8 are highly enriched in fractions that contain mRNA transport particles, and cytosolic drosha is associated with kinesin heavy chain; these findings suggest that pri-miRs are transported to synaptic regions in a manner similar to mRNAs. This study supports the notion that miRNA biogenesis occurs locally near synapses in a regulated fashion.


Subject(s)
MicroRNAs/metabolism , Neurons/ultrastructure , Post-Synaptic Density/metabolism , Prosencephalon/cytology , Animals , Immunoprecipitation , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Phosphopyruvate Hydratase/metabolism , Proteins/genetics , Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins , Ribonuclease III/genetics , Ribonuclease III/metabolism , Synaptosomes/metabolism
11.
Front Neurosci ; 6: 81, 2012.
Article in English | MEDLINE | ID: mdl-22675290

ABSTRACT

Recent intriguing evidence suggests that metabolites of amyloid precursor protein (APP), mutated in familial forms of Alzheimer's disease (AD), play critical roles in developmental and postnatal neurogenesis. Of note is soluble APPα (sAPPα) that regulates neural progenitor cell proliferation. The APP family encompasses a group of ubiquitously expressed and evolutionarily conserved, type I transmembrane glycoproteins, whose functions have yet to be fully elucidated. APP can undergo proteolytic cleavage by mutually exclusive pathways. The subtle structural differences between metabolites generated in the different pathways, as well as their equilibrium, may be crucial for neuronal function. The implications of this new body of evidence are significant. Miscleavage of APP would readily impact developmental and postnatal neurogenesis, which might contribute to cognitive deficits characterizing Alzheimer's disease. This review will discuss the implications of the role of the APP family in neurogenesis for neuronal development, cognitive function, and brain disorders that compromise learning and memory, such as AD.

12.
Hippocampus ; 22(6): 1220-4, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22128095

ABSTRACT

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. Individuals affected with the disorder exhibit a deficiency of the fragile X mental retardation protein (FMRP), due to transcriptional silencing of the Fmr1 gene. It is widely accepted that learning deficits in FXS result from impaired synaptic function and/or plasticity in the brain. Interestingly, recent evidence suggests that conditional knockout of Fmr1 in neural progenitor cells in mice impairs hippocampal neurogenesis, which in turn contributes to learning impairments. To examine the nature of the neurogenic impairments and determine whether they impact the morphology of the dentate gyrus, we assessed the extent of neural progenitor cell proliferation, survival, and differentiation in older adult Fmr1 knockout mice. Here, we show that the number of fast-proliferating cells in the subgranular layer of the dentate gyrus, as well as the subsequent survival of these cells, are dramatically reduced in Fmr1 knockout mice. In addition, the number of mature neurons in the granule layer of the dentate gyrus of these mice is significantly smaller than in wild type littermate controls, suggesting that impaired proliferation and survival of neural progenitor cells compromises the structure of the dentate gyrus. Impaired adult neurogenesis may underlie, at least in part, the learning deficits that characterize fragile X syndrome.


Subject(s)
Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Fragile X Mental Retardation Protein , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Age Factors , Animals , Cell Survival/physiology , Fragile X Mental Retardation Protein/genetics , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout
13.
Stem Cell Res Ther ; 2(4): 36, 2011 Aug 30.
Article in English | MEDLINE | ID: mdl-21878106

ABSTRACT

INTRODUCTION: Soluble amyloid precursor protein α (sAPPα) is a proteolyte of APP cleavage by α-secretase. The significance of the cleavage and the physiological role of sAPPα are unknown. A crystal structure of a region of the amino terminal of sAPPα reveals a domain that is similar to cysteine-rich growth factors. While a previous study implicates sAPPα in the regulation of neural progenitor cell proliferation in the subventricular zone of adult mice, the ubiquitous expression of APP suggests that its role as a growth factor might be broader. METHODS: sAPPα and α-secretase activities were determined in neural progenitor cells (NPCs), mesenchymal stem cells (MSC) and human decidua parietalis placenta stem cells (hdPSC). Inhibition of α-secretase was achieved by treatment with the matrixmetalloproteinase inhibitor GM6001, and proliferation was determined using clonogenic and immunocytochemical analysis of cell-lineage markers. Recovery of proliferation was achieved by supplementing GM6001-treated cells with recombinant soluble APPα. Expression of APP and its cellular localization in the subventricular zone was determined by Western blot and immunohistochemical analyses of APP wild type and knockout tissue. Alterations in pERK and pAKT expression as a function of soluble APPα production and activity in NPCs were determined by Western blot analysis. RESULTS: Here we show that sAPPα is a proliferation factor of adult NPCs, MSCs and hdpPSC. Inhibition of α-secretase activity reduces proliferation of these stem cell populations in a dose-dependent manner. Stem cell proliferation can be recovered by the addition of sAPPα in a dose-dependent manner, but not of media depleted of sAPPα. Importantly, sAPPα operates independently of the prominent proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but in association with ERK signaling and MAP-kinase signaling pathways. Levels of sAPPα and putative α-secretase, ADAM10, are particularly high in the subventricular zone of adult mice, suggesting a role for sAPPα in regulation of NPCs in this microenvironment. CONCLUSIONS: These results determine a physiological function for sAPPα and identify a new proliferation factor of progenitor cells of ectodermal and mesodermal origin. Further, our studies elucidate a potential pathway for sAPPα signaling through MAP kinase activation.


Subject(s)
Adult Stem Cells , Amyloid beta-Protein Precursor/physiology , Mesenchymal Stem Cells , Peptide Fragments/physiology , Adult , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Proliferation/drug effects , Decidua/cytology , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Ectoderm/cytology , Enzyme Activation , Female , Humans , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mesoderm/cytology , Mice , Neurons/cytology , Pregnancy , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...