Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 8(1): 585, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330364

ABSTRACT

A promising emerging area for the treatment of obesity and diabetes is combinatorial hormone therapy, where single-molecule peptides are rationally designed to integrate the complementary actions of multiple endogenous metabolically-related hormones. We describe here a proof-of-concept study on developing unimolecular polypharmacy agents through the use of selection methods based on phage-displayed peptide libraries (PDL). Co-agonists of the glucagon (GCG) and GLP-1 receptors were identified from a PDL sequentially selected on GCGR- and GLP1R-overexpressing cells. After two or three rounds of selection, 7.5% of randomly picked clones were GLP1R/GCGR co-agonists, and a further 1.53% were agonists of a single receptor. The phages were sequenced and 35 corresponding peptides were synthesized. 18 peptides were potent co-agonists, 8 of whom showed EC50 ≤ 30 pM on each receptor, comparable to the best rationally designed co-agonists reported in the literature. Based on literature examples, two sequences were engineered to stabilize against dipeptidyl peptidase IV cleavage and prolong the in vivo half-life: the engineered peptides were comparably potent to the parent peptides on both receptors, highlighting the potential use of phage-derived peptides as therapeutic agents. The strategy described here appears of general value for the discovery of optimized polypharmacology paradigms across several metabolically-related hormones.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Peptides/chemical synthesis , Peptides/pharmacology , Receptors, Glucagon/agonists , Diabetes Mellitus/drug therapy , Dipeptidyl Peptidase 4/metabolism , Humans , Obesity/drug therapy , Peptide Library , Peptides/genetics , Polypharmacy , Sequence Analysis, DNA
2.
PLoS One ; 10(8): e0135278, 2015.
Article in English | MEDLINE | ID: mdl-26313909

ABSTRACT

Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2). Antigen binding regions were created by designing combinatorial libraries into the structural loops and Abdurins were selected using phage display methods. Initial binders were reformatted into new maturation libraries and low nanomolar binders were isolated using cell-free DNA display, CIS display. Further characterization confirmed binding of the Abdurins to both human and murine EphA2 proteins and exclusively to cell lines that expressed EphA2, followed by rapid internalization. Two different EphA2 binders were labeled with 64Cu, using a bifunctional MeCOSar chelator, and administered to mice bearing tumors from transplanted human prostate cancer cells, followed by PET/CT imaging. The anti-EphA2 Abdurins localized in the tumors as early as 4 hours after injection and continued to accumulate up to 48 hours when the imaging was completed. These data demonstrate the ability to isolate high affinity binders from the engineered Abdurin scaffold, which retain a long serum half-life, and specifically target tumors in a xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Protein Engineering/methods , Receptor, EphA2/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Peptide Library , Positron-Emission Tomography , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
3.
Transl Oncol ; 4(1): 38-46, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21286376

ABSTRACT

RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo.

4.
PLoS One ; 3(1): e1508, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-18231595

ABSTRACT

A novel and efficient tagArray technology was developed that allows rapid identification of antibodies which bind to receptors with a specific expression profile, in the absence of biological information. This method is based on the cloning of a specific, short nucleotide sequence (tag) in the phagemid coding for each phage-displayed antibody fragment (phage-Ab) present in a library. In order to set up and validate the method we identified about 10,000 different phage-Abs binding to receptors expressed in their native form on the cell surface (10 k Membranome collection) and tagged each individual phage-Ab. The frequency of each phage-Ab in a given population can at this point be inferred by measuring the frequency of its associated tag sequence through standard DNA hybridization methods. Using tiny amounts of biological samples we identified phage-Abs binding to receptors preferentially expressed on primary tumor cells rather than on cells obtained from matched normal tissues. These antibodies inhibited cell proliferation in vitro and tumor development in vivo, thus representing therapeutic lead candidates.


Subject(s)
Antibodies, Monoclonal/genetics , Bacteriophages/genetics , Oligonucleotide Array Sequence Analysis , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL