Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Trials ; 24(1): 809, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104131

ABSTRACT

BACKGROUND: Prostate cancer remains the most prevalent malignancy and the second-leading cause of cancer-related death in men in the USA. Radiation therapy, typically with androgen suppression, remains a mainstay in the treatment of intermediate- and high-risk, potentially lethal prostate cancers. However, local recurrence and treatment failure remain common. Basic and translational research has determined the potential for using androgen receptor (AR) ligands (e.g., dihydrotestosterone and flutamide) in the context of androgen-deprived prostate cancer to induce AR- and TOP2B-mediated DNA double-strand breaks (DSBs) and thereby synergistically enhance the effect of radiation therapy (RT). The primary aim of this study is to carry out pharmacodynamic translation of these findings to humans. METHODS: Patients with newly diagnosed, biopsy-confirmed localized prostatic adenocarcinoma will be recruited. Flutamide, an oral non-steroidal androgen receptor ligand, will be administered orally 6-12 h prior to prostate biopsy (performed under anesthesia prior to brachytherapy seed implantation). Key study parameters will include the assessment of DNA double-strand breaks by γH2A.x foci and AR localization to the nucleus. The initial 6 patients will be treated in a single-arm run-in phase to assess futility by establishing whether at least 2 subjects from this group develop γH2A.x foci in prostate cancer cells. If this criterion is met, the study will advance to a two-arm, randomized controlled phase in which 24 participants will be randomized 2:1 to either flutamide intervention or placebo standard-of-care (with all patients receiving definitive brachytherapy). The key pharmacodynamic endpoint will be to assess whether the extent of γH2A.x foci (proportion of cancer cells positive and number of foci per cancer cell) is greater in patients receiving flutamide versus placebo. Secondary outcomes of this study include an optional, exploratory analysis that will (a) describe cancer-specific methylation patterns of cell-free DNA in plasma and urine and (b) assess the utility of serum and urine samples as a DNA-based biomarker for tracking therapeutic response. DISCUSSION: This study will confirm in humans the pharmacodynamic effect of AR ligands to induce transient double-strand breaks when administered in the context of androgen deprivation as a novel therapy for prostate cancer. The findings of this study will permit the development of a larger trial evaluating flutamide pulsed-dose sequencing in association with fractionated external beam RT (+/- brachytherapy). The study is ongoing, and preliminary data collection and recruitment are underway; analysis has yet to be performed. TRIAL REGISTRATION: ClinicalTrials.gov NCT03507608. Prospectively registered on 25 April 2018.


Subject(s)
Flutamide , Prostatic Neoplasms , Male , Humans , Flutamide/therapeutic use , Androgens , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Androgen Antagonists/therapeutic use , Receptors, Androgen , Ligands , Prospective Studies , Treatment Outcome , DNA , Randomized Controlled Trials as Topic
2.
J Pathol ; 260(4): 455-464, 2023 08.
Article in English | MEDLINE | ID: mdl-37345735

ABSTRACT

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma, Mucinous , Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Adenocarcinoma, Mucinous/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Pancreatic Neoplasms
3.
Cancer Cell ; 41(5): 933-949.e11, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37116491

ABSTRACT

Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Proteins/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Repressor Proteins/metabolism
4.
Urol Oncol ; 39(5): 295.e1-295.e8, 2021 05.
Article in English | MEDLINE | ID: mdl-32948433

ABSTRACT

PURPOSE: To survey urologic clinicians regarding interpretation of and practice patterns in relation to emerging aspects of prostate cancer grading, including quantification of high-grade disease, cribriform/intraductal carcinoma, and impact of magnetic resonance imaging-targeted needle biopsy. MATERIALS AND METHODS: The Genitourinary Pathology Society distributed a survey to urology and urologic oncology-focused societies and hospital departments. Eight hundred and thirty four responses were collected and analyzed using descriptive statistics. RESULTS: Eighty percent of survey participants use quantity of Gleason pattern 4 on needle biopsy for clinical decisions, less frequently with higher Grade Groups. Fifty percent interpret "tertiary" grade as a minor/<5% component. Seventy percent of respondents would prefer per core grading as well as a global/overall score per set of biopsies, but 70% would consider highest Gleason score in any single core as the grade for management. Seventy five percent utilize Grade Group terminology in patient discussions. For 45%, cribriform pattern would affect management, while for 70% the presence of intraductal carcinoma would preclude active surveillance. CONCLUSION: This survey of practice patterns in relationship to prostate cancer grading highlights similarities and differences between contemporary pathology reporting and its clinical application. As utilization of Gleason pattern 4 quantification, minor tertiary pattern, cribriform/intraductal carcinoma, and the incorporation of magnetic resonance imaging-based strategies evolve, these findings may serve as a basis for more nuanced communication and guide research efforts involving pathologists and clinicians.


Subject(s)
Practice Patterns, Physicians' , Prostatic Neoplasms/pathology , Urology , Health Surveys , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Male , Neoplasm Grading , Prostatic Neoplasms/diagnostic imaging
5.
Arch Pathol Lab Med ; 145(4): 461-493, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32589068

ABSTRACT

CONTEXT.­: Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.­: To update grading recommendations. DATA SOURCES.­: Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.­: Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.


Subject(s)
Neoplasm Grading/standards , Pathology/standards , Prostatic Neoplasms/pathology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biopsy, Needle/standards , Consensus , Humans , Image-Guided Biopsy/standards , Immunohistochemistry/standards , Magnetic Resonance Imaging/standards , Male , Molecular Diagnostic Techniques/standards , Predictive Value of Tests , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/genetics
6.
Pathogens ; 9(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321732

ABSTRACT

Nodding syndrome is a pediatric epilepsy disorder associated with Onchocerca volvulus infection, but the mechanism driving this relationship is unclear. One hypothesis proposes that parasite-induced immune responses cross-react with human leiomodin-1 resulting in immune-mediated central nervous system (CNS) damage. However, as leiomodin-1 expression and epitope availability in human neurons remains uncharacterized, the relevance of leiomodin-1 autoimmunity is unknown. Leiomodin-1 transcript expression was assessed in silico using publicly available ribonucleic acid (RNA) sequencing databases and in tissue by in situ hybridization and quantitative polymerase chain reaction. Abundance and subcellular localization were examined by cell fractionation and immunoblotting. Leiomodin-1 transcripts were expressed in cells of the CNS, including neurons and astrocytes. Protein was detectable from all brain regions examined as well as from representative cell lines and in vitro differentiated neurons and astrocytes. Leiomodin-1 was expressed on the membrane of newly formed neurons, but not neural progenitor cells or mature neurons. Importantly, leiomodin-1 antibodies were only toxic to cells expressing leiomodin-1 on the membrane. Our findings provide evidence that leiomodin-1 is expressed in human neurons and glia. Furthermore, we show membrane expression mediates leiomodin-1 antibody toxicity, suggesting these antibodies may play a role in pathogenesis.

7.
Cancer Res ; 80(20): 4514-4526, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32859605

ABSTRACT

Amplification and overexpression of the MYC oncogene in tumor cells, including ovarian cancer cells, correlates with poor responses to chemotherapy. As MYC is not directly targetable, we have analyzed molecular pathways downstream of MYC to identify potential therapeutic targets. Here we report that ovarian cancer cells overexpressing glutaminase (GLS), a target of MYC and a key enzyme in glutaminolysis, are intrinsically resistant to platinum-based chemotherapy and are enriched with intracellular antioxidant glutathione. Deprivation of glutamine by glutamine-withdrawal, GLS knockdown, or exposure to the GLS inhibitor CB-839 resulted in robust induction of reactive oxygen species in high GLS-expressing but not in low GLS-expressing ovarian cancer cells. Treatment with CB-839 rendered GLShigh cells vulnerable to the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, and prolonged survival in tumor-bearing mice. These findings suggest consideration of applying a combined therapy of GLS inhibitor and PARP inhibitor to treat chemoresistant ovarian cancers, especially those with high GLS expression. SIGNIFICANCE: Targeting glutaminase disturbs redox homeostasis and nucleotide synthesis and causes replication stress in cancer cells, representing an exploitable vulnerability for the development of effective therapeutics. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4514/F1.large.jpg.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Glutaminase/metabolism , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzeneacetamides/administration & dosage , Benzeneacetamides/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic , Glutaminase/antagonists & inhibitors , Glutamine/genetics , Glutamine/metabolism , Glutathione/metabolism , Humans , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phthalazines/administration & dosage , Phthalazines/pharmacology , Piperazines/administration & dosage , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/genetics , Thiadiazoles/administration & dosage , Thiadiazoles/pharmacology , Xenograft Model Antitumor Assays
8.
Am J Surg Pathol ; 44(5): 673-680, 2020 05.
Article in English | MEDLINE | ID: mdl-31876580

ABSTRACT

Intraductal carcinoma of the prostate (IDC-P) has been recently recognized by the World Health Organization classification of prostatic tumors as a distinct entity, most often occurring concurrently with invasive prostatic adenocarcinoma (PCa). Whether documented admixed with PCa or in its rare pure form, numerous studies associate this entity with clinical aggressiveness. Despite increasing clinical experience and requirement of IDC-P documentation in protocols for synoptic reporting, the specifics of its potential contribution to assessment of grade group (GG) and cancer quantitation of PCa in both needle biopsies (NBx) and radical prostatectomy (RP) specimens remain unclear. Moreover, there are no standard guidelines for incorporating basal cell marker immunohistochemistry (IHC) in the diagnosis of IDC-P, either alone or as part of a cocktail with AMACR/racemase. An online survey containing 26 questions regarding diagnosis, reporting practices, and IHC resource utilization, focusing on IDC-P, was undertaken by 42 genitourinary subspecialists from 9 countries. The degree of agreement or disagreement regarding approaches to individual questions was classified as significant majority (>75%), majority (51% to 75%), minority (26% to 50%) and significant minority (≤25%). IDC-P with or without invasive cancer is considered a contraindication for active surveillance by the significant majority (95%) of respondents, although a majority (66%) also agreed that the clinical significance/behavior of IDC-P on NBx or RP with PCa required further study. The majority do not upgrade PCa based on comedonecrosis seen only in the intraductal component in NBx (62%) or RP (69%) specimens. Similarly, recognizable IDC-P with GG1 PCa was not a factor in upgrading in NBx (78%) or RP (71%) specimens. The majority (60%) of respondents include readily recognizable IDC-P in assessment of linear extent of PCa at NBx. A significant majority (78%) would use IHC to confirm or exclude intraductal carcinoma if other biopsies showed no PCa, while 60% would use it to confirm IDC-P with invasive PCa in NBx if it would change the overall GG assignment. Nearly half (48%, a minority) would use IHC to confirm IDC-P for accurate Gleason pattern 4 quantitation. A majority (57%) report the percentage of IDC-P when present, in RP specimens. When obvious Gleason pattern 4 or 5 PCa is present in RP or NBx, IHC is rarely to almost never used to confirm the presence of IDC-P by the significant majority (88% and 90%, respectively). Most genitourinary pathologists consider IDC-P to be an adverse prognostic feature independent of the PCa grade, although recommendations for standardization are needed to guide reporting of IDC-P vis a vis tumor quantitation and final GG assessment. The use of IHC varies widely and is performed for a multitude of indications, although it is used most frequently in scenarios where confirmation of IDC-P would impact the GG assigned. Further study and best practices recommendations are needed to provide guidance with regards to the most appropriate indications for IHC use in scenarios regarding IDC-P.


Subject(s)
Carcinoma, Ductal/pathology , Health Resources/trends , Immunohistochemistry/trends , Practice Patterns, Physicians'/trends , Prostatic Neoplasms/pathology , Specialization/trends , Biomarkers, Tumor/analysis , Biopsy, Large-Core Needle/trends , Carcinoma, Ductal/chemistry , Carcinoma, Ductal/therapy , Health Care Surveys , Humans , Male , Neoplasm Grading , Predictive Value of Tests , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/therapy , Reproducibility of Results
10.
Mol Cancer Res ; 17(2): 356-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30291220

ABSTRACT

Prostate cancer bone metastasis remains lethal and incurable, and often arises years after elimination of the primary tumor. It is unclear what underlies the decades-long clinical latency before recurrence, but evidence points to the existence of dormant residual tumor cells that disseminated before the primary tumor was eliminated. To design therapies to prevent progression of disseminated tumor cells (DTC) into lethal metastases, it is crucial to understand the mechanism(s) underlying this dormancy. The current study functionally validated our previous observation that implicated the GAS6/AXL axis in mediating DTC dormancy in the bone marrow. AXL-null and AXL-overexpressing prostate cancer cell lines were generated to determine if AXL was necessary and/or sufficient for dormancy. Characterization of these cells in vitro and using in vivo mouse models of DTC growth demonstrated that AXL was indeed sufficient to induce dormancy, but was unable to maintain it long-term and was not absolutely required for a dormancy period. Clinically, AXL expression correlated with longer survival in prostate cancer patients, and AXL was not expressed by cancer cells in primary or metastatic tissue. These data point to a tumor-suppressive role for AXL in prostate cancer, and future work is required to determine if AXL is expressed on human bone marrow DTCs. IMPLICATIONS: The ability of AXL to initiate but not maintain dormancy, coupled with its dispensability, suggests that targeting AXL alone will not prevent lethal metastatic outgrowth, and likely a cooperative network of factors exists to mediate long-term cellular dormancy.


Subject(s)
Genes, Tumor Suppressor , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Prostatic Neoplasms/enzymology , Prostatic Neoplasms, Castration-Resistant/enzymology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tissue Array Analysis , Axl Receptor Tyrosine Kinase
11.
Cancer Res ; 78(1): 64-74, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29180471

ABSTRACT

The MYC oncogene broadly promotes transcription mediated by all nuclear RNA polymerases, thereby acting as a positive modifier of global gene expression. Here, we report that MYC stimulates the transcription of DANCR, a long noncoding RNA (lncRNA) that is widely overexpressed in human cancer. We identified DANCR through its overexpression in a transgenic model of MYC-induced lymphoma, but found that it was broadly upregulated in many human cancer cell lines and cancers, including most notably in prostate and ovarian cancers. Mechanistic investigations indicated that DANCR limited the expression of cell-cycle inhibitor p21 (CDKN1A) and that the inhibitory effects of DANCR loss on cell proliferation could be partially rescued by p21 silencing. In a xenograft model of human ovarian cancer, a nanoparticle-mediated siRNA strategy to target DANCR in vivo was sufficient to strongly inhibit tumor growth. Our observations expand knowledge of how MYC drives cancer cell proliferation by identifying DANCR as a critical lncRNA widely overexpressed in human cancers.Significance: These findings expand knowledge of how MYC drives cancer cell proliferation by identifying an oncogenic long noncoding RNA that is widely overexpressed in human cancers. Cancer Res; 78(1); 64-74. ©2017 AACR.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Neoplastic , Genes, myc , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Male , Mice, Nude , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
12.
Oncotarget ; 8(61): 104182-104192, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262631

ABSTRACT

PURPOSE: To determine the pharmacodynamic effects of Sonidegib (LDE-225) in prostate tumor tissue from men with high-risk localized prostate cancer, by comparing pre-surgical core-biopsy specimens to tumor tissue harvested post-treatment at prostatectomy. METHODS: We conducted a prospective randomized (Sonidegib vs. observation) open-label translational clinical trial in men with high-risk localized prostate cancer undergoing radical prostatectomy. The primary endpoint was the proportion of patients in each arm who achieved at least a two-fold reduction in GLI1 mRNA expression in post-treatment versus pre-treatment tumor tissue. Secondary endpoints included the effect of pre-surgical treatment with Sonidegib on disease progression following radical prostatectomy, and safety. RESULTS: Fourteen men were equally randomized (7 per arm) to either neoadjuvant Sonidegib or observation for 4 weeks prior to prostatectomy. Six of seven men (86%) in the Sonidegib arm (and none in the control group) achieved a GLI1 suppression of at least two-fold. In the Sonidegib arm, drug was detectable in plasma and in prostatic tissue; and median intra-patient GLI1 expression decreased by 63-fold, indicating potent suppression of Hedgehog signaling. Sonidegib was well tolerated, without any Grade 3-4 adverse events observed. Disease-free survival was comparable among the two arms (HR = 1.50, 95% CI 0.26-8.69, P = 0.65). CONCLUSIONS: Hedgehog pathway activity (as measured by GLI1 expression) was detectable at baseline in men with localized high-risk prostate cancer. Sonidegib penetrated into prostatic tissue and induced a >60-fold suppression of the Hedgehog pathway. The oncological benefit of Hedgehog pathway inhibition in prostate cancer remains unclear.

13.
JCI Insight ; 2(24)2017 12 21.
Article in English | MEDLINE | ID: mdl-29263308

ABSTRACT

Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients' disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease.


Subject(s)
Breast Neoplasms/genetics , Evolution, Molecular , Mutation , Autopsy , Breast Neoplasms/pathology , DNA Copy Number Variations , DNA, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Frequency , Genes, Neoplasm , Humans , Loss of Heterozygosity , Neoplasm Metastasis , Exome Sequencing/methods
14.
EBioMedicine ; 18: 83-93, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28412251

ABSTRACT

Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.


Subject(s)
Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Androgen/metabolism , Binding Sites , Cell Line, Tumor , Chromatin/metabolism , Cluster Analysis , Disease-Free Survival , Down-Regulation , Gene Regulatory Networks , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Kallikreins/genetics , Kallikreins/metabolism , Kaplan-Meier Estimate , Male , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/mortality , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Up-Regulation
15.
Cancer Chemother Pharmacol ; 78(6): 1297-1304, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27826729

ABSTRACT

PURPOSE: Hedgehog (Hh) pathway signaling has been implicated in prostate cancer tumorigenesis and metastatic development and may be upregulated even further in the castration-resistant state. We hypothesized that antagonism of the Hh pathway with vismodegib in men with metastatic castration-resistant prostate cancer (mCRPC) would result in pathway engagement, inhibition and perhaps induce measurable clinical responses in patients. METHODS: This is a single-arm study of oral daily vismodegib in men with mCRPC. All patients were required to have biopsies of the tumor and skin (a surrogate tissue) at baseline and after 4 weeks of therapy. Ten patients were planned for enrollment. The primary outcome was the pharmacodynamic assessment of Gli1 mRNA suppression with vismodegib in tumor tissue. Secondary outcomes included PSA response rates, progression-free survival (PFS), overall survival (OS) and safety. RESULTS: Nine patients were enrolled. Gli1 mRNA was significantly suppressed by vismodegib in both tumor tissue (4/7 evaluable biopsies, 57%) and benign skin biopsies (6/8 evaluable biopsies, 75%). The median number of treatment cycles completed was three, with a median PFS of 1.9 months (95% CI 1.3, NA), and a median OS of 7.04 months (95% CI 3.4, NA). No patient achieved a PSA reduction or a measurable tumor response. Safety data were consistent with the known toxicities of vismodegib. CONCLUSIONS: Hh signaling, as measured by Gli1 mRNA expression in mCRPC tissues, was suppressed with vismodegib in the majority of patients. Despite this pharmacodynamic response that indicated target inhibition in some patients, there was no apparent signal of clinical activity. Vismodegib will not be developed further as monotherapy in mCRPC.


Subject(s)
Anilides/therapeutic use , Hedgehog Proteins/antagonists & inhibitors , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyridines/therapeutic use , Aged , Anilides/adverse effects , Anilides/pharmacology , Hedgehog Proteins/physiology , Humans , Male , Middle Aged , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/mortality , Pyridines/adverse effects , Pyridines/pharmacology , Zinc Finger Protein GLI1/genetics
16.
Prostate ; 76(9): 845-53, 2016 06.
Article in English | MEDLINE | ID: mdl-27159573

ABSTRACT

BACKGROUND: Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. METHODS: Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. RESULTS: 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. CONCLUSIONS: Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic targeted therapeutics in ERG-positive/MYC high tumors. Prostate 76:845-853, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Humans , Immunohistochemistry , Male , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Oncogene Fusion , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Tissue Array Analysis , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
17.
Eur Urol ; 68(4): 555-67, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25964175

ABSTRACT

BACKGROUND: Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. OBJECTIVE: To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping. DESIGN, SETTING, AND PARTICIPANTS: We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)). OUTCOME MEASUREMENTS: Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves. RESULTS AND LIMITATIONS: The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p<0.001). m-ETS(+) tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1(+)/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different among subtypes. CONCLUSIONS: A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns. PATIENT SUMMARY: Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Area Under Curve , Carrier Proteins/genetics , Cluster Analysis , Europe , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Fusion , Gene Rearrangement , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Logistic Models , Male , Multivariate Analysis , Neoplasm Grading , Odds Ratio , Oligonucleotide Array Sequence Analysis , Phenotype , Predictive Value of Tests , Prostatectomy , Prostatic Neoplasms/classification , Prostatic Neoplasms/surgery , Proto-Oncogene Proteins c-ets/genetics , ROC Curve , Reproducibility of Results , Trans-Activators/genetics , Transcriptional Regulator ERG , Trypsin Inhibitor, Kazal Pancreatic , United States , Up-Regulation
18.
Hum Pathol ; 46(5): 698-706, 2015 May.
Article in English | MEDLINE | ID: mdl-25724568

ABSTRACT

ERG and PTEN biomarkers are increasingly being analyzed on prostate core biopsies (NBXs); ERG as a marker of clonality and number of separately arising tumor foci and PTEN for prognostic information. Yet, in patients with multiple biopsy cores positive for cancer (PCa), there is no standardized approach for interrogation of these biomarkers in terms of the number of positive cores to evaluate. A total of 194 NBX cases containing more than one positive core with cancer were evaluated for ERG overexpression and PTEN loss by immunostaining (immunohistochemistry) of all positive cores. ERG overexpression or PTEN loss in at least one cancer core was present in 111 (57%) and 69 (36%) cases respectively. ERG overexpression was significantly associated with PTEN loss (P < .0001), and PTEN loss was associated with a high Gleason score (P < .0001). Inter- and intra-tumor core staining heterogeneity for ERG overexpression occurred in 42% and 5% cases and for PTEN loss both intra- and inter-tumor core heterogeneity was 68%. PTEN staining was highly discordant between PCa sites regardless of laterality. When the Gleason score was non-uniform across PCa sites, the combination of cores showing the highest Gleason score and largest tumor volume provided the best representation of ERG overexpression (92%) and PTEN loss (98%). When grades were uniform across cancer sites, the highest tumor volume core was generally representative of ERG overexpression (90%) but was less representative for PTEN loss (76%). Our results suggest that knowledge of this heterogeneity is critical for developing optimal yet cost-effective strategies to identify these underlying molecular abnormalities.


Subject(s)
Biomarkers, Tumor/metabolism , PTEN Phosphohydrolase/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/metabolism , Trans-Activators/metabolism , Biopsy, Large-Core Needle , Humans , Immunohistochemistry/methods , Male , Prognosis , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Risk , Transcriptional Regulator ERG
19.
Am J Surg Pathol ; 38(5): 604-14, 2014 May.
Article in English | MEDLINE | ID: mdl-24618616

ABSTRACT

Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Urological Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cathepsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that metastasize.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Adult , Aged , Child , Child, Preschool , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 6/genetics , Female , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Middle Aged , Tissue Array Analysis , Translocation, Genetic , Young Adult
20.
Cancer Treat Res ; 159: 51-68, 2014.
Article in English | MEDLINE | ID: mdl-24114474

ABSTRACT

Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic "catastrophe" affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic "catastrophe" has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of fruits and vegetables, especially tomatoes and crucifers, might act to attenuate the ravages of the chronic or recurrent inflammatory processes. Specifically, nutritional agents might prevent PIA lesions or reduce the propensity of PIA lesions to suffer "catastrophic" epigenome corruption.


Subject(s)
Diet/adverse effects , Prostatic Neoplasms/etiology , Animals , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...