Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107332, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703998

ABSTRACT

Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by CD, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics.

2.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464089

ABSTRACT

Calpain-3 is an intracellular Ca2+-dependent cysteine protease abundant in skeletal muscle. Its physiological role in the sarcomere is thought to include removing damaged muscle proteins after exercise. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2). The latter sequences are unique to this calpain isoform and are hypersensitive to proteolysis. To investigate the whole enzyme structure and how mutations might affect its activity, we produce the proteolytically more stable 85-kDa calpain-3 ΔNS ΔIS1 form with a C129A inactivating mutation as a recombinant protein in E. coli. During size-exclusion chromatography, this calpain-3 was consistently eluted as a much larger 0.5-MDa complex rather than the expected 170-kDa dimer. Its size, which was confirmed by SEC-MALS, Blue Native PAGE, and AUC, made the complex amenable to single-particle cryo-EM analysis. From two data sets, we obtained a 3.85-Å reconstruction map that shows the complex is a trimer of calpain-3 dimers with six penta-EF-hand domains at its core. Calpain-3 has been reported to bind the N2A region of the giant muscle protein titin. When this 37-kDa region of titin was co-expressed with calpain-3 the multimer was reduced to a 320-kDa particle, which appears to be the calpain dimer bound to several copies of the titin fragment. We suggest that newly synthesized calpain-3 is kept as an inactive hexamer until it binds the N2A region of titin in the sarcomere, whereupon it dissociates into functional dimers.

3.
Elife ; 122024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349818

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Subject(s)
Haemophilus influenzae , N-Acetylneuraminic Acid , Haemophilus influenzae/metabolism , Cryoelectron Microscopy , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism
4.
Curr Protoc ; 4(2): e974, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319042

ABSTRACT

Analytical ultracentrifugation experiments play an integral role in the solution-phase characterization of biological macromolecules and their interactions. This unit discusses the design of sedimentation velocity and sedimentation equilibrium experiments performed with a Beckman Proteomelab XL-A or XL-I analytical ultracentrifuge and with a Beckman Optima AUC. Instrument settings and experimental design considerations are explained, and strategies for the analysis of experimental data with the UltraScan data analysis software package are presented. Special attention is paid to the strengths and weaknesses of the available detectors, and guidance is provided on how to extract maximum information from analytical ultracentrifugation experiments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Subject(s)
Research Design , Ultracentrifugation/methods
5.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38197635

ABSTRACT

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Subject(s)
Escherichia coli Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Guanosine Triphosphate/metabolism , Escherichia coli Proteins/metabolism , Cyclic GMP/metabolism , Phosphoric Diester Hydrolases/metabolism , Biofilms , Gene Expression Regulation, Bacterial
6.
ACS Chem Biol ; 18(12): 2574-2581, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37960878

ABSTRACT

Analogs of proline can be used to expand the chemical space about the residue while maintaining its uniquely restricted conformational space. Here, we demonstrate the incorporation of 4R-methylproline, 4S-methylproline, and 4-methyleneproline into recombinant insulin expressed in Escherichia coli. These modified proline residues, introduced at position B28, change the biophysical properties of insulin: Incorporation of 4-methyleneproline at B28 accelerates fibril formation, while 4-methylation speeds dissociation from the pharmaceutically formulated hexamer. This work expands the scope of proline analogs amenable to incorporation into recombinant proteins and demonstrates how noncanonical amino acid mutagenesis can be used to engineer the therapeutically relevant properties of protein drugs.


Subject(s)
Insulin , Proline , Insulin/metabolism , Models, Molecular , Amino Acids/metabolism , Molecular Conformation , Escherichia coli/genetics , Escherichia coli/metabolism
7.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961422

ABSTRACT

The Polycomb Group (PcG) complex PRC1 represses transcription, forms condensates in cells, and modifies chromatin architecture. These processes are connected through the essential, polymerizing Sterile Alpha Motif (SAM) present in the PRC1 subunit Polyhomeotic (Ph). In vitro, Ph SAM drives formation of short oligomers and phase separation with DNA or chromatin in the context of a Ph truncation ("mini-Ph"). Oligomer length is controlled by the long disordered linker (L) that connects the SAM to the rest of Ph--replacing Drosophila PhL with the evolutionarily diverged human PHC3L strongly increases oligomerization. How the linker controls SAM polymerization, and how polymerization and the linker affect condensate formation are not know. We analyzed PhL and PHC3L using biochemical assays and molecular dynamics (MD) simulations. PHC3L promotes mini-Ph phase separation and makes it relatively independent of DNA. In MD simulations, basic amino acids in PHC3L form contacts with acidic amino acids in the SAM. Engineering the SAM to make analogous charge-based contacts with PhL increased polymerization and phase separation, partially recapitulating the effects of the PHC3L. Ph to PHC3 linker swaps and SAM surface mutations alter Ph condensate formation in cells, and Ph function in Drosophila imaginal discs. Thus, SAM-driven phase separation and polymerization are conserved between flies and mammals, but the underlying mechanisms have diverged through changes to the disordered linker.

8.
Nanomedicine (Lond) ; 18(22): 1519-1534, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37877696

ABSTRACT

Aim: We present multi-wavelength (MW) analytical ultracentrifugation (AUC) methods offering superior accuracy for adeno-associated virus characterization and quantification. Methods: Experimental design guidelines are presented for MW sedimentation velocity and analytical buoyant density equilibrium AUC. Results: Our results were compared with dual-wavelength AUC, transmission electron microscopy and mass photometry. In contrast to dual-wavelength AUC, MW-AUC correctly quantifies adeno-associated virus capsid ratios and identifies contaminants. In contrast to transmission electron microscopy, partially filled capsids can also be detected and quantified. In contrast to mass photometry, first-principle results are obtained. Conclusion: Our study demonstrates the improved information provided by MW-AUC, highlighting the utility of several recently integrated UltraScan programs, and reinforces AUC as the gold-standard analysis for viral vectors.


Subject(s)
Capsid , Dependovirus , Dependovirus/genetics , Ultracentrifugation/methods , Genetic Vectors , Microscopy, Electron, Transmission
9.
Eur Biophys J ; 52(4-5): 195-201, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37526680

ABSTRACT

The 25th International Analytical Ultracentrifugation (AUC) Workshops and Symposium (AUC2022) took place at the University of Lethbridge in Lethbridge, Canada, in July 2022. In total, 104 attendees (Attendance Profile: 104 attendees, 69 in-person, 35 remote. Brazil 1, Canada 24, China 1, Czech Republic 2, Finland 1, France 3, Germany 22, India 3, Italy 1, Japan 4, Spain 1, Switzerland 3, Taiwan 1, United Kingdom 5, United States 32) participated in the event and presented the latest advances in the field. While the primary focus of the conference was to showcase the applications of AUC in chemical, life sciences, and nanoparticle disciplines, several presentations also integrated complementary methods, such as isothermal titration calorimetry, microscale thermophoresis, light scattering (static and dynamic), small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy. Additionally, the delegates gained valuable hands-on experience from 20 workshops covering a broad range of applications, experimental designs and systems, and the latest software innovations in solution biophysics. The AUC2022 special volume highlights the sustained innovation, utility and relevance of AUC and related solution biophysical methods across various disciplines, including biochemistry, structural biology, synthetic polymer chemistry, carbohydrate chemistry, protein and nucleic acid characterization, nano-science, and macromolecular interactions.


Subject(s)
Software , United States , Humans , Cryoelectron Microscopy , Canada , Ultracentrifugation , Brazil
10.
Eur Biophys J ; 52(4-5): 267-280, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37501021

ABSTRACT

To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.


Subject(s)
DNA, Superhelical , DNA , Reproducibility of Results , DNA, Circular , Ultracentrifugation
11.
Eur Biophys J ; 52(4-5): 445-457, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209172

ABSTRACT

We report the solution behavior, oligomerization state, and structural details of myotoxin-II purified from the venom of Bothrops asper in the presence and absence of sodium dodecyl sulfate (SDS) and multiple lipids, as examined by analytical ultracentrifugation and nuclear magnetic resonance. Molecular functional and structural details of the myotoxic mechanism of group II Lys-49 phospholipase A2 homologues have been only partially elucidated so far, and conflicting observations have been reported in the literature regarding the monomeric vs. oligomeric state of these toxins in solution. We observed the formation of a stable and discrete, hexameric form of myotoxin-II, but only in the presence of small amounts of SDS. In SDS-free medium, myotoxin-II was insensitive to mass action and remained monomeric at all concentrations examined (up to 3 mg/ml, 218.2 µM). At SDS concentrations above the critical micelle concentration, only dimers and trimers were observed, and at intermediate SDS concentrations, aggregates larger than hexamers were observed. We found that the amount of SDS required to form a stable hexamer varies with protein concentration, suggesting the need for a precise stoichiometry of free SDS molecules. The discovery of a stable hexameric species in the presence of a phospholipid mimetic suggests a possible physiological role for this oligomeric form, and may shed light on the poorly understood membrane-disrupting mechanism of this myotoxic protein class.


Subject(s)
Bothrops , Neurotoxins , Animals , Neurotoxins/chemistry , Neurotoxins/metabolism , Neurotoxins/toxicity , Bothrops/metabolism , Phospholipases A2 , Magnetic Resonance Spectroscopy , Bothrops asper
12.
Eur Biophys J ; 52(4-5): 311-320, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37014454

ABSTRACT

A method for characterizing and quantifying peaks formed in an analytical buoyant density equilibrium (ABDE) experiment is presented. An algorithm is derived to calculate the concentration of the density forming gradient material at every point in the cell, provided the rotor speed, temperature, meniscus position, bottom of the cell position, and the loading concentration, molar mass, and partial specific volume of the density gradient-forming material are known. In addition, a new peak fitting algorithm has been developed which allows the user to automatically quantify the peaks formed in terms of density, apparent partial specific volume, and relative abundance. The method is suitable for both ionic and non-ionic density forming materials and can be used with data generated from the UV optical system as well as the AVIV fluorescence optical system. These methods have been programmed in a new UltraScan-III module (us_abde). Examples are shown that demonstrate the application of the new module to adeno-associated viral vector preparations and proteins.


Subject(s)
Algorithms , Capsid , Proteins , Molecular Weight
13.
Eur Biophys J ; 52(4-5): 303-310, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36930298

ABSTRACT

Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recently developed technique that has proven to be a promising tool to investigate mixtures of molecules containing multiple chromophores. It provides an orthogonal separation approach by distinguishing molecules based on their spectral and hydrodynamic properties. Existing software implementations do not permit the user to assess the integrity of the spectral decomposition. To address this shortcoming, we developed a new spectral decomposition residual visualization module, which monitors the accuracy of the spectral decomposition. This module assists the user by providing visual and statistical feedback from the decomposition. The software has been integrated into the UltraScan software suite and an example of a mixture containing thyroglobulin and DNA is presented for illustration purposes.


Subject(s)
Hydrodynamics , Software , Area Under Curve , Ultracentrifugation/methods , DNA
14.
Nucleic Acids Res ; 51(9): 4588-4601, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36999609

ABSTRACT

Numerous viruses utilize essential long-range RNA-RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA-RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA-RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA-RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5' and 3' terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA-RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA-RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.


Subject(s)
Encephalitis Virus, Japanese , RNA, Viral , Humans , RNA, Viral/chemistry , RNA, Long Noncoding/chemistry
15.
Nucleic Acids Res ; 51(8): 4027-4042, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36971110

ABSTRACT

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.


Subject(s)
DNA, Superhelical , Hydrodynamics , DNA , Nucleic Acid Conformation
16.
Eur Biophys J ; 52(4-5): 473-481, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36939874

ABSTRACT

NET-1 is a key chemotropic ligand that signals commissural axon migration and change in direction. NET-1 and its receptor UNC-5B switch axon growth cones from attraction to repulsion. The biophysical properties of the NET-1 + UNC-5B complex have been poorly characterized. Using multi-wavelength-AUC by adding a fluorophore to UNC-5B, we were able to separate the UNC-5B sedimentation from NET-1. Using both multi-wavelength- and single-wavelength AUC, we investigated NET-1 and UNC-5B hydrodynamic parameters and complex formation. The sedimentation velocity experiments show that NET-1 exists in a monomer-dimer equilibrium. A close study of the association shows that NET-1 forms a pH-sensitive dimer that interacts in an anti-parallel orientation. UNC-5B can form equimolar NET-1 + UNC-5B heterocomplexes with both monomeric and dimeric NET-1.


Subject(s)
Netrin Receptors , Netrin-1 , Protein Interaction Domains and Motifs , Animals , Ultracentrifugation , Netrin-1/chemistry , Humans
17.
J Am Chem Soc ; 145(9): 5285-5296, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36812303

ABSTRACT

The folding of collagen is a hierarchical process that starts with three peptides associating into the characteristic triple helical fold. Depending on the specific collagen in question, these triple helices then assemble into bundles reminiscent of α-helical coiled-coils. Unlike α-helices, however, the bundling of collagen triple helices is very poorly understood with almost no direct experimental data available. In order to shed light on this critical step of collagen hierarchical assembly, we have examined the collagenous region of complement component 1q. Thirteen synthetic peptides were prepared to dissect the critical regions allowing for its octadecameric self-assembly. We find that short peptides (under 40 amino acids) are able to self-assemble into specific (ABC)6 octadecamers. This requires the ABC heterotrimeric composition as the self-assembly subunit, but does not require disulfide bonds. Self-assembly into this octadecamer is aided by short noncollagenous sequences at the N-terminus, although they are not entirely required. The mechanism of self-assembly appears to begin with the very slow formation of the ABC heterotrimeric helix, followed by rapid bundling of triple helices into progressively larger oligomers, terminating in the formation of the (ABC)6 octadecamer. Cryo-electron microscopy reveals the (ABC)6 assembly as a remarkable, hollow, crown-like structure with an open channel approximately 18 Å at the narrow end and 30 Å at the wide end. This work helps to illuminate the structure and assembly mechanism of a critical protein in the innate immune system and lays the groundwork for the de novo design of higher order collagen mimetic peptide assemblies.


Subject(s)
Collagen , Peptides , Amino Acid Sequence , Cryoelectron Microscopy , Peptides/chemistry , Collagen/chemistry , Protein Conformation, alpha-Helical
18.
Eur Biophys J ; 52(4-5): 203-213, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36786920

ABSTRACT

A method for removing time- and radially invariant noise from sedimentation velocity and sedimentation equilibrium experiments performed in an analytical ultracentrifuge is presented. The method averages repeat radial incident light measurements as a function of the photomultiplier response at different wavelengths to remove the majority of the time-invariant noise contributions from intensity data measurements. The results of this method are compared to traditional absorbance data generated with a buffer reference and the Beckman Optima AUC data acquisition program, and with the standard UltraScan refinement workflow. The method avoids the amplification of stochastic noise inherent in the absorbance scan subtraction traditionally employed in sedimentation velocity and equilibrium data. In addition, the collection of intensity data frees up the reference channel for additional samples, doubling the capacity of the instrument. In comparison to absorbance data, the residual mean square deviation of a fitted sedimentation velocity experiment without additional noise correction by UltraScan was improved by a factor of 4.5 when using the new method. This improvement benefits sedimentation equilibrium experiments as well as analytical buoyant density equilibrium experiments where routine time-invariant noise correction calculations cannot be performed.


Subject(s)
Ultracentrifugation , Ultracentrifugation/methods
19.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674796

ABSTRACT

Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.


Subject(s)
Inteins , Staphylococcus aureus , Humans , Inteins/genetics , Ligands , Thermodynamics , Immunoglobulin G , Calorimetry/methods , Protein Binding
20.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36711572

ABSTRACT

DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...