Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Protoc ; 3(10): e904, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37882787

ABSTRACT

The synapse, which represents the structural and functional basis of neuronal communication, is one of the first elements affected in several neurodegenerative diseases. To better understand the potential role of gene expression in synapse loss, we developed an original high-content screening (HCS) model capable of quantitatively assessing the impact of gene silencing on synaptic density. Our approach is based on a model of primary neuronal cultures (PNCs) from the neonatal rat hippocampus, whose mature synapses are visualized by the relative localization of the presynaptic protein Synaptophysin with the postsynaptic protein Homer1. The heterogeneity of PNCs and the small sizes of the synaptic structures pose technical challenges associated with the level of automation necessary for HCS studies. We overcame these technical challenges, automated the processes of image analysis and data analysis, and carried out tests under real-world conditions to demonstrate the robustness of the model developed. In this article, we describe the screening of a custom library of 198 shRNAs in PNCs in the 384-well plate format. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culture of primary hippocampal rat neurons in 384-well plates Basic Protocol 2: Lentiviral shRNA transduction of primary neuronal culture in 384-well plates Basic Protocol 3: Immunostaining of the neuronal network and synaptic markers in 384-well plates Basic Protocol 4: Image acquisition using a high-throughput reader Basic Protocol 5: Image segmentation and analysis Basic Protocol 6: Synaptic density analysis.


Subject(s)
Bone Plates , Culture , Animals , Rats , Automation , Data Analysis , Neurons , RNA, Small Interfering
3.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Article in English | MEDLINE | ID: mdl-33144711

ABSTRACT

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Humans , Membrane Proteins , Neoplasm Proteins , Neuronal Plasticity/genetics , Neurons , Risk Factors
4.
Brain Commun ; 2(2): fcaa139, 2020.
Article in English | MEDLINE | ID: mdl-33718872

ABSTRACT

Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid ß peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid ß1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid ß suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid ß1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.

5.
Sci Rep ; 7: 40764, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28112163

ABSTRACT

Tau-mediated neurodegeneration in Alzheimer's disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.


Subject(s)
Aneuploidy , Gene Expression Regulation, Developmental , Neurons/metabolism , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Animals , Cell Line , Cell Survival/genetics , Humans , Mitosis/genetics , Mutation , Neural Stem Cells/metabolism , Phenotype , Photoreceptor Cells/metabolism , Protein Isoforms , Tauopathies/pathology
6.
Acta Neuropathol ; 133(6): 955-966, 2017 06.
Article in English | MEDLINE | ID: mdl-27933404

ABSTRACT

Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer's disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the "post-GWAS" era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a ß3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aß peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aß peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aß peptide production.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Small Interfering/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biomarkers/cerebrospinal fluid , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , HEK293 Cells , Hippocampus/metabolism , Hippocampus/pathology , Humans , Neurons/metabolism , Neurons/pathology , RNA Interference , Rats
7.
Methods Mol Biol ; 1523: 297-305, 2017.
Article in English | MEDLINE | ID: mdl-27975258

ABSTRACT

Tau is a microtubule associated protein (MAP) that is expressed in neurons of the central nervous system. Tau proteins are deregulated in a group of pathologies, including Alzheimer's disease, commonly called tauopathies. Therefore intensive research has been conducted to understand both the regulation of Tau and its involvement in neuronal cellular pathways. Since its originally described interactor tubulin, Tau has been described to interact with several other proteins, including tyrosine kinases (Src, Fyn, Lck) and Phospholipase C-γ. In this chapter, we describe the use of proximity ligation assay as a versatile method to study the endogenous interaction of Tau with these different neuronal partners and use the recently identified Tau interactor Bin1 as case study.


Subject(s)
Biological Assay/methods , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Neurons/metabolism , Phospholipase C gamma/metabolism , Protein Binding , Protein-Tyrosine Kinases/metabolism , Rats , Tauopathies/metabolism , src-Family Kinases/metabolism
8.
EBioMedicine ; 9: 278-292, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27333034

ABSTRACT

Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aß peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aß secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aß42 secretion in neuron primary cultures, soluble Aß42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aß production, thereby contributing to Alzheimer's disease development.


Subject(s)
ADAM Proteins/metabolism , Amyloid beta-Peptides/metabolism , Cathepsin D/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Brain/metabolism , Brain/pathology , Cathepsin D/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , HEK293 Cells , Humans , Lysosomes/metabolism , Macrolides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Patch-Clamp Techniques , Pepstatins/pharmacology , RNA Interference , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL